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1.1 Introduction 

1.1.1 NMAG Overview

Nmag is a flexible finite element micro magnetic simulation package with user interface 

based on the Python programming language [1.1]. It has been developed at the University 

of Southampton with substantial contributions from Hans Fangohr, Thomas Fischbacher, 

Matteo Franchin, Giuliano Bordignon, Jacek Generowicz, Andreas Knittel, Michael Walter, 

and Maximilian Albert. 

The main features of Nmag are: 

based on finite elements (suitable for non-cuboidal structures) 

problem description in Python, therefore high degree of flexibility 

inbuilt mesh post processing tools 

efficient data storage (binary compressed) and extraction into vtk files (of course the 

raw data can be extracted) 

arbitrary crystal anisotropy 

(pseudo) periodic boundary conditions ("macro geometry approach") 

Spin torque transfer (Zhang-Li model for uniform current density) 

Supports use of matrix compression library (HLib) for BEM 

This software was developed at the University of Southampton, United Kingdom. It is 

released under the GNU General Public License (GNU GPL) as published by the Free 

Software Foundation. 

1.1.1.1 NMAG Philosophy 

Many specialized simulation codes used in research today consist of a highly specialized 

core application which initially was written to simulate the behaviour of some very specific 

system. Often, the core application then evolved into a more broadly applicable tool through 

the introduction of additional parameters. Some simulation codes reach a point where it 

becomes evident that they need an amount of flexibility that can only be provided by 

including some script programming capabilities [1.2]. 



The approach underlying Nmag turns this very common pattern of software evolution 

(which we also have seen in web browsers, CAD software, word processors, etc.) on its 

head: rather than gradually providing more and more flexibility in an ad-hoc manner through 

adding configuration parameters, slowly evolving into an extensive specialized 

programming language, Nmag starts out as an extension to a widely used programming 

language (Python) from which it gains all its flexibility and evolves towards more 

specialized notions to conveniently define and study the properties of very specific physical 

systems [1.3]. 

The main advantage of this approach is two-fold: first, we do not gradually evolve another 

ad-hoc (and potentially badly implemented) special purpose programming language. 

Second, by drawing upon the capabilities of a well-supported existing framework for 

flexibility, we get a lot of additional power for free: the user can employ readily available 

and well supported Python libraries for tasks such as data post-processing and analysis, e.g. 

generating images for web pages etc. In addition to this, some users may benefit from the 

capability to use Nmag interactively from a command prompt, which can be very helpful 

during the development phase of an involved simulation script [1.4]. 

At present, Nmag is based on the Python programming language. This seems to be a 

somewhat reasonable choice at present, as Python is especially friendly towards casual users 

who do not want to be forced to first become expert programmers before they can produce 

any useful results. Furthermore, Python is quite widespread and widely supported these 

days. 

1.1.1.2 Micro magnetic Modelling 

Micro magnetics deals with the interactions between magnetic moments on sub-micrometre 

length scales. These are governed by several competing energy terms. Dipolar energy is the 

energy which causes magnets to align north to south pole. Exchange energy will attempt to 

make the magnetic moments in the immediately surrounding space lie parallel to one another 

(if the material is ferromagnetic) or anti parallel to one another (if anti ferromagnetic). 

Anisotropy energy is low when the magnetic moments are aligned along a particular crystal 

direction. Zeeman energy is at its lowest when magnetic moments lie parallel to an external

magnetic field. 



Since the most efficient magnetic alignment (also known as a configuration) is the one in 

which the energy is lowest, the sum of these four energy terms will attempt to become as 

small as possible at the expense of the others, yielding complex physical interactions. The 

competition of these interactions under different conditions is responsible for the overall 

behaviour of a magnetic system. 

To carry out micro magnetic simulations, a set of partial differential equations have to be 

solved repeatedly. In order to be able to do this, the simulated geometry has to be spatially 

discretised. The two methods that are most widely spread in micro magnetic modelling are 

the so-called finite difference (FD) method and the finite element (FE) method. With either 

the FD or the FE method, we need to integrate the Landau-Lifshitz and Gilbert equation 

numerically over time (this is a coupled set of ordinary differential equations). All these 

calculations are carried out by the Micro magnetic packages and the user does not have to 

worry about these. 

The finite difference method subdivides space into many small cuboids. Sometimes the 

name cell is used to describe one of these cuboids. (Warning: in finite difference simulations, 

the simulated geometry is typically enclosed by a (big) cuboid which is also referred to as 

simulation cell. Usually (!) it is clear from the context which is meant.) Typically, all 

simulation cells in one finite difference simulation have the same geometry. A typical size 

for such a cell could be a cube of dimensions 3nm by 3nm by 3nm. 

shows an 

approximation of the shape of the sphere by cubes. This is the finite difference approach. 

For clarity, rather larger cubes were chosen to resolve the sphere  in an actual simulation 

one would typically use a much smaller cell size in order to resolve geometry better. 

Figure 1.1 Discretised sphere using Cube as basic element 



On the other hand, the finite element method (typically) subdivides space into many small 

tetrahedra. The tetrahedra are sometimes referred to as the (finite element) mesh elements. 

Typically, the geometry of these tetrahedra does vary throughout the simulated region. This 

allows combining the tetrahedra to approximate complicated geometries. The spherical 

shape is approximated better than with the finite differences. 

Figure 1.2 Discretised sphere using Tetrahedra as basic element 

The first step in setting up a micro magnetic simulation is to describe the geometry. In the 

case of finite difference calculations, it will depend on the package to be used and how small 

simulation cells should be. In the case of finite element calculations, a finite element mesh 

is to be created first and then proceed for micro magnetic modelling and simulation. 

1.1.2 Graphical User Interface (GUI)

In computing, a graphical user interface (GUI) is a type of user interface that allows users 

to interact with electronic devices with images rather than text commands. A GUI represents 

the information and actions available to a user through graphical icons and visual indicators 

such as secondary notation, as opposed to text-based interfaces, typed command labels or 

text navigation. The actions are usually performed through direct manipulation of the 

graphical elements. A GUI uses a combination of technologies and devices to provide a 

platform that the user can interact with, for the tasks of gathering and producing information. 

1.1.3 Objective: Design of Graphical User Interface for NMAG

The first objective of work was to design a highly interactive Graphical User Interface for

the scientific tool NMAG. This includes to manage the overall task of micro magnetic 

simulation using NMAG, starting from creating structures, generating finite element mesh, 

defining properties, creating simulation script (most challenging task), run the calculation 

and at the end to visualize and analyse the results, through the Graphical User Interface. The 



aim was to enhance the functionality of the tool by making it more users friendly.   The end 

result was to provide a tool which will help the users who have good understanding of the 

tool, by reducing the time to design the problem [1.5], as well as to help the peoples who 

are new to this tool by providing them appropriate way to proceed and the result of work is 

able to fulfil these objectives. 

1.2 The need of GUI designing for NMAG 



The existing system is manual. 

Wastage of paper and other resources. 

Selection procedure takes too much time. 

Huge amount of data gets collected during data entry. 

Consumes lot of time. 

Delay in results. 



1.3 Feasibility Study 

1.3.1 Concept of feasibility test

Preliminary investigation examines project feasibility, the likelihood that system will be 

useful. The main objective of the feasibility study is to test the Technical, Operational and 

Economical feasibility for adding new modules and debugging old running system. 

1.3.1.1 Technical Feasibility 



Is there sufficient support from the user to provide important feedback? 

Will the system be used and work properly if it is being developed and implemented? 

Will there be any resistance from the user that will undermine the possible 

application benefits? 

1.3.1.3 Economic Feasibility 

1.4 Analysis and Design 

1.4.1 Design Specifications

1.4.1.1 Design specifications from key owner of the tool

A brief plan of GUI, provided by Prof. Hans Fangohr (key owner of tool), is as follows: 

Assumption: 
- allow only one material 
- Uniform constant magnetic external magnetic field, 
On start-up: 
  - Ask user whether current directory should be the project directory 
    If not, allow to navigate to project directory, or to create a new subdirectory (if possible) 
1. Create Geometry 
2. Mesh geometry 



3. Create simulation script 
4. Run simulation 
5. Analyse results 
6. Visualise 

1. Create Geometry: 
  - can offer default geometries, like 
    - sphere (ellipsoid), radius 50nm 
    - cube   (thin film), l=50nm 
    - Cylinder, l=100nm, r=15nm 
    Ideally: allow user to enter origins, corners, radii, then write .geo file for this. 
    - should all be centred around origin 
    - express units in nanometre 
  -> .geo file 
2. Mesh geometry / Create mesh: 
   - list all *.geo files in directory and ask user to select one (if there are more than one) 
   - provide buttons to 
     - assisted creation of geometry file (-> takes us to 'Create Geometry') 
     - visualise geometry 
     - generate mesh 
     - edit .geo file 
3. Write simulation script: 
   - Select mesh (could propose mesh we have dealt with last as the default) 
   - select Material (ideally from list (initially Py, Co, Ni, Fe). 
         Allow user to modify these Material parameters manually. 
         Includes anisotropy 
   - select time dependent simulation 
     - How long, how often to save data, what data to save 
     - Suggestion: 
       - define save interval for averaged data 
       - define save interval for (spatially resolved) magnetisation (m) 
       - define save interval for all (spatially resolved) fields 
      Question: communicate to user that saving spatially resolved fields will save averages 
automatically 
   - Hysteresis loop: 
4. Run simulation 

1.4.1.2 Getting Information from the review of Existing Software Tool 

I have gone through the detailed software description and working, made discussions with 

guide and list out the features expected by a user while working on GUI. 

1.4.2 Structured Analysis

 It is a set of techniques and graphical tools that allow the analyst to develop a new kind of 

system specifications that are easily understandable to the user. One tool for this is Data 

Flow Diagram (DFD). 



1.4.2.1 DFD for NMAG GUI work flow 

Figure 1.3 DFD for NMAG GUI work flow 



1.4.3 Design Objectives

1.4.3.1 User Interface, Input and Output Design

User interface, input and output design begins the systems design phase of the SDLC. The 

user interface should include all the tasks, commands and communication between users and 

the system. In GUI environment a user can display and work with multiple windows on the 

single screen. Input Design Issues during input design, determine how data will be captured 

and entered into the system. Data capture is the identification and recording of source data. 

Data entry is the process of converting source data into computer readable form and entering 

it into or from system. 

Input Design has six main objectives: 

To select a suitable input and data entry method  

To reduce the input volume 

To design attractive data entry screen 

To use validation check to reduce input errors 

To design required source documents 

To develop effective input control 

Output Design issues include: 

What is the purpose of output? 

Who wants the information, why it is needed and how it will be used? 

Will the output be printed, viewed on screen or both? 

Reports like any other elements of the user-computer interface should be attractive, 

professional, and easy to use. System analysts should realize that printed output is highly 

visible and manages sometimes judges project by the quality of reports they receive. 

1.4.3.2 System Design

System design is highly creative process, which can be greatly facilitated by the following 

stages: 



Proper problem definition 

Pictorial description of the existing system 

Set of requirements of the new system 

Overall design of the whole system 

During analysis the focus is on what needs to be done, independent of how it is done. During 

design, decisions are made about how the problem will be solved, first at a high level, then 

at increasingly detailed level. 

System design is the first stage in which the basic approach of solving the problem is 

selected. During system design, the overall structure and style is decided. The system 

architecture is the overall organization of the system into components called sub-systems. 

The architecture provides the context in which more detailed decisions are made in later 

design stages. By making high level decisions that apply to the entire system, the system 

designer partitions the problem into sub-systems so that several designers working 

independently on different subsystems can be further work. 

 The system designer must make the following decisions: 

Organize the system into sub-systems. 

Identify concurrency inherent in the system. 

Strategy for data stores (data structure) 

Handling global resources. 

Basic architecture for system. 

Input design: It is a process of converting user oriented inputs to a computer-based format. 

Input data are collected and organized into group of similar data once identified; appropriate 

input media are selected for processing. The goal of designing input data is to make data 

entry easy, logical and free from errors as possible in entering data. 

Output design: Computer is the most important and direct source of information to the user. 

Efficient intelligible output design should improv

and help in decision making. The goal of designing output data is that it must be in user 

understandable form and consistent. 



1.4.4 Logical design and code development

In this step of design we draw a logical model of our system of interest. On the basis of the 

structured analysis such as DFD, Structured English we draw a conceptual model of our 

system of interest. In work logical design is as follows: 

Start new simulation: 
if (Select Directory) 

either create directory 
or  change directory 

   or  exit 
if (Create Geometry) 
 either  select from default geometries 
  insert parameters, edit  geometry, view geometry 
 or  create custom geometry 
  insert parameters, edit  geometry, view geometry 
 or  exit 
if (Create Mesh from geometry) 
 either  create/edit/view geometry 
 or  generate mesh 
  view mesh 
 or  exit 
if (Create Simulation Script) 
 insert parameters 
 create script 
 view/edit script 
 exit 
if (Run Simulation) 
 start calculation 
if (Restart Run) 
 restart calculation 
if (Analyse Spatially Averaged Data) 
 either  draw different plots using Xmgrace or gnuplot 
 or  exit 
if (Visualise) 
 Visualise calculation results using Mayavi 
if (Exit NMAG) 
 exit from NMAG 
: end Simulation 

1.4.5 Physical Design

After deciding what has to be done actual work of designing start in which we actually 

design the system based on the logical design. The final physical design appears as given 

below [1.7]. 









1.4.6 Files and file names [1.2]

1.4.6.1 geo files (.geo)

This file contains specification for geometry. 

1.4.6.2 mesh files (.nmesh, .nmesh.h5) 

Files that contain a finite element mesh. 

1.4.6.3 Simulation scripts (.py) 

Files that contain simulation program code. The ending is (by convention) .py which reflects 

that the programming language used is Python. 

1.4.6.4 Data files (.ndt) 

ndt stands for Nmag Data Table. ndt files are ascii files where each row corresponds to one-

time step (or, more generally, configuration of the system). The columns contain: 

_ metadata such as 

 a unique identifier for every row 

 the time at which the row was written 

_ (spatially) averaged field data 

The first two lines contain information about what data is stored in the various columns: 

1. The first line provides a header 

2. The second line provides the SI units 

All other lines contain the actual data. 

The file can be loaded into any data processing software (such as MS Excel, Origin, Matlab, 

Gnuplot ...). However, often it is more convenient to use the ncol tool to select the relevant 

columns, and only to pass the filtered data to a post-processing (e.g. plotting) program. Data 

is written into the ndt file whenever the save_data_ method of the simulation object is called. 

1.4.6.5 Data files (.h5)

The h5 data files store spatially resolved fields. The format is a binary and compressed hdf5 

format to which we have convenient access via the pytables package for Python. The user 

should not have to worry about reading this file directly, but use the nmagpp tool to access 

the data. 

1.4.6.6 File names for data files 

The filenames for the ndt and h5 data files are given by concatenation of the simulation 

name, the extension _dat. and the extension (.h5 or .ndt). 



When a simulation object is created, for example in a file called mybar.py: 

import nmag 

sim = nmag.Simulation(name="bar") 

then the simulation name is bar. 

If no name is provided, i.e. the file mybar.py starts like this: 

import nmag 

sim = nmag.Simulation() 

then the simulation name will be the run id. The run id is the filename of the simulation 

script (without the .py extension), i.e. the simulation name then will be mybar. 

Let us assume for the rest of this section that the simulation name is bar. Once we use the 

save_data_ command, for example like this: 

sim.save_data() 

a ndt file will be created, with name bar_dat.ndt (= bar + _dat. + ndt). 

Similarly, if we write the fields spatially resolved: 

sim.save_data(fields='all') 

a h5 data file with name bar_dat.h5 (= bar + _dat. + h5) will be created. 

1.4.6.7 File names for log files 

A log file is created that stores (most of) the messages displayed to stdout (i.e. the screen). 

The name of the log file starts with the name of the simulation script (without the .py 

extension), and ends with _log.log. For example, a simulation script with name mybar.py 

will have an associated log file with name mybar_log.log. Another three files will be created 

if the (undocumented) --dumpconf switch is provided. These are: 

_ mybar_log.conf: This can be used to configure what data is logged. 

_ mybar_ocaml.conf: Configuration of some variables used in the ocaml code 

_ mybar_nmag.conf: Some variables used in the nmag code 

1.4.6.8 .dat and .txt files 

These are the files extension for files to save some specific data after extracting the main 

files, so as to plot by any plotting tool. 

1.4.6.9 .vtk files 

These files store results for visualization tool like Mayavi 

1.4.6.10 .ps and .pdf files 

These are the extensions to store the results in proper printable format. 



1.5 Implementation 

1.5.1 System testing and quality assurance

In this phase the system is tested. Normally programs are written as a series of individual 

modules, these subjects to separate and detailed test. The system is then tested as a whole. 

The separate modules are brought together and tested as a complete system. The system is 

tested to ensure that interfaces between modules work (integration testing), the system works 

on the intended platform and with the expected volume of data (volume testing) and that the 

system does what the user requires (acceptance/beta testing).  

Levels of Quality Assurance: 

Alpha testing: In this test software goes through a phase in which errors and failures based 

on simulated user requirement are verified and studied. 

Beta testing: In this modified software is checked at actual user's site on a live environment. 

Note: THIS SYSTEM HAS SUCCESSFULLY GONE THROUGH BOTH TESTING. 

1.5.2 System Testing

1.5.2.1 Example 1: Demag field in uniformly magnetised sphere [1.2]



.geo file 
algebraic3d 

 solid main = sphere (0, 0, 0; 40)-maxh=3.0 ; 
 tlo main; 

Mesh: 

Figure 1.10 Mesh for the sphere geometry 

Simulation Script: 
import sys 
sys.argv.append('--clean') 
import nmag 
from nmag import SI 

#create simulation object 
sim = nmag.Simulation() 

# define magnetic material 
Py = nmag.MagMaterial(name = 'Py', 
                      Ms = SI(1e6, 'A/m'), 
                      exchange_coupling = SI(13.0e-12, 'J/m')) 

# load mesh 
sim.load_mesh('sphere1.nmesh.h5', 
              [('sphere', Py)], 
              unit_length = SI(1e-9, 'm')) 

# set initial magnetization 
sim.set_m([1,0,0]) 

# set external field 
sim.set_H_ext([0,0,0], SI('A/m')) 

# Save and display data in a variety of ways 
sim.save_data(fields='all') # save all fields spatially resolved 



# together with average data 

# sample demag field through sphere 
for i in range(-10,11): 
    x = i*1e-9                      #position in meters 
    H_demag = sim.probe_subfield_siv('H_demag', [x,0,0]) 
    print "x =", x, ": H_demag = ", H_demag 

Results:

Figure 1.11 Demag field in uniformly magnetised sphere for given parameters 

1.5.2.2 Example 2: Simple hysteresis loop [1.2] 

.geo files: 



algebraic3d 
 solid test = ellipsoid (0, 0, 0; 30.0, 0, 0; 0, 10.0, 0; 0, 0, 10.0) -maxh=3; 
 tlo test; 

Mesh: 

Figure 1.12 Mesh for ellipsoid 

Simulation Script: 
import nmag 
from nmag import SI, at 

#create simulation object 
sim = nmag.Simulation() 

# define magnetic material 
Py = nmag.MagMaterial(name="Py", 
                      Ms=SI(1e6,"A/m"), 
                      exchange_coupling=SI(13.0e-12, "J/m")) 

# load mesh: the mesh dimensions are scaled by 0.5 nm 



sim.load_mesh("ellipsoid.nmesh.h5", 
              [("ellipsoid", Py)], 
              unit_length=SI(1e-9,"m")) 

# set initial magnetization 
sim.set_m([1.,0.,0.]) 

Hs = nmag.vector_set(direction=[1.,0.01,0], 
                     norm_list=[ 1.00,  0.95, [], -1.00, 
                                -0.95, -0.90, [],  1.00], 
                     units=1e6*SI('A/m')) 

# loop over the applied fields Hs 
sim.hysteresis(Hs, save=[('restart','fields', at('convergence'))]) 

Results: 

Figure 1.13 Hysteresis loop for the ellipsoid for given parameters 



1.6 Hardware and software selection 

A Linux based system having good hardware configuration and minimum of following 

software will be required to work the system in its designated way: 

Python for scripting 

Text editor preferably gedit 

Netgen for geometry visualization and mesh generation 

Proper set up having basic NMAG packages for necessary calculations 

Xmgrace or GNU plot for graphical result display 

Mayavi for pictorial results visualisation 

1.7 Conclusion 

It has been a great pleasure for me to work on this exciting and challenging project. This 

project proved good for me as it provided practical knowledge of programming in Python. 

It also provides knowledge about the latest technology used in developing various user 

interfaces that will be great demand in future. This will provide better opportunities and 

guidance in future for developing projects. 

1.8 Benefits 
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2.1 Introduction 

2.1.1 USPEX Overview

USPEX (Universal Structure Prediction: Evolutionary Xtallography) is a method developed 

jointly by Artem R. Oganov and Colin W. Glass, Andriy O. Lyakhov and Qiang Zhu, and 

implemented in the same-name code written by Andriy Lyakhov and Colin W. Glass and 

Qiang Zhu mainly at Stony Brook University, New York [2.1]. USPEX can be used to 

predict stable crystal structures at given P-T conditions, knowing only the chemical 

composition (or to predict both the stable compositions and structures, given the element 

types). Many previous attempts to solve crystal structure problem were plagued by low 

success rate and extreme computational costs that prevented full ab initio studies. USPEX 

avoids both of these problems. In fact, "uspekh" means "success" in Russian - which 

highlights a nearly 100% success rate for this method.  

USPEX can also be used for finding low-energy metastable phases, as well as stable 

structures of nanoparticles, surface reconstructions, molecular packings in organic crystals, 

and for searching for materials with desired physical (mechanical, electronic) properties. 

The USPEX code is based on an efficient evolutionary algorithm developed by A.R. 

Oganov's group, but also has options for using alternative methods (random sampling, 

metadynamics, corrected PSO algorithms). USPEX is interfaced with many DFT or classical 

codes, such as VASP, SIESTA, GULP, Quantum Espresso, CP2K, and so on. 

USPEX is characterized not only by high efficiency and reliability (witnessed by the recent 

blind test of inorganic crystal structure prediction, where it has scored the highest success) 

but also by state-of-the art analysis and visualization tools developed by Mario Valle 

specifically for the USPEX project. These tools enable rapid visual analysis of large datasets, 

with interactive screens and possibilities not only to visualize crystal structures and analyse 

them (in terms of fingerprint functions, space groups, bond lengths and angles, order 

parameters, etc.), but to explore correlations between structures and their properties, 

energies, and simulation parameters. USPEX is based on a carefully tuned structure 

prediction-specific evolutionary algorithm. USPEX searches for the structure corresponding 

to the global minimum of the ab initio free energy. The quality of trial structures is judged 

by the ab initio free energy calculated by an external ab initio code (currently for this, 



USPEX code can use VASP and SIESTA, but developers may include other codes as well). 

The use of simpler methods, e.g. based on inter atomic potentials, is also possible - in this 

case the structure prediction is extremely fast.  

Features of the code: 

Structure prediction with just the chemical composition.  

Incorporation of partial structural information is possible  

Constraining search to fixed experimental cell parameters, or fixed cell 

shape, or fixed cell volume, 

Starting structure search from known or hypothetical structures. 

Efficient constraint techniques, which eliminate unphysical and redundant regions 

of the search space.  

Handling of molecules (rather than atoms), fully or partly rigid is possible.  

Restart facilities, enabling calculations to be continued from any point along the 

evolutionary trajectory (if needed, with changed parameters).  

Powerful visualisation and analysis techniques implemented in the STM4 code (by 

M.Valle), fully interfaced with USPEX.  

USPEX is interfaced with VASP, SIESTA and GULP codes. There are development 

interfaces with ABINIT, LAMMPS, and MD++.  

Job submission from local workstation to remote supercomputers is possible.  

Job submission via grid is possible (grid part by S. Tikhonov and S. Sobolev).  

Many new features are now in progress.  

This software was developed mainly at the Stony Brook University, New York. It is free for 

academic use. 

2.1.1.1 USPEX Philosophy 

The USPEX (Universal Structure Predictor: Evolutionary Xtallography) code possesses 

rather unique capabilities: it allows one to predict the stable structure of a given compound 

at given conditions (pressure, temperature) just from the knowledge of the chemical 

composition and using no experimental information [2.2]. From the beginning, this non-

empirical crystal structure prediction was the main aim of the USPEX project. This is 

achieved by merging a specially developed evolutionary algorithm featuring local 



optimisation and real-space representation with ab initio simulations. In addition to this fully 

non-empirical search, USPEX allows one to predict also a large set of robust metastable 

structures and perform several types of simulations using various degrees of prior 

knowledge. The problem of crystal structure prediction is very old and does, in fact, 

constitute the central problem of theoretical crystal chemistry. In 1988 John Maddox [2.3]

wrote that: 

predict the structure of even the simplest crystalline solids from a knowledge of their chemical 

Following is the working of USPEX: 

1. The first generation is produced by a random-number generator (only those structures 

which satisfy the hard constraints are allowed). Non-random start from some good structures 

provided by user is also possible. 

2. Among the locally optimised structures, a certain number of the worst ones are rejected, 

and the remaining structures participate in creating the next generation through heredity, 

permutation and mutation. Selection probabilities for variation operators are derived from 

the rank of their fitness (i.e. their calculated free energies). 

During heredity, new structures are produced by matching slices (chosen in random 

directions and with random positions) of the parent structures. A certain fraction of 

structures is produced by randomly shifting these slices in their matching plane, and this 

attice vectors 

matrix elements (for this matrix we use the upper-triangular form in order to avoid 

unphysical whole-cell rotations) is done by taking a weighted average, using random 

weights. A certain fraction of the new generation is created by permutation (i.e. switching 

identities of two or more atoms in a structure) and mutation (random change of the cell 

vectors and/or atomic positions). Lattice mutation essentially incorporates into this method 

the ideas of metadynamics, where new structures are found by building up cell distortions 

of some known structure. Unlike in metadynamics, in this method the distortions are not 

accumulated, so to obtain new structures the strain components should be large. 



To avoid pathological lattices all newly obtained structures are rescaled to have a certain 

volume, which is then relaxed by local optimisation. The value of the rescaling volume is 

not very important and can be easily estimated either from the equation of state of some 

known structure or by optimising a random structure; this value is used only for the first 

generation and for subsequent generations is adapted to the volumes of several best found 

structures. A specified number of the best structures (usually, one) of the current generation 

always survive, mate and compete in the next generation. 

3. The simulation is terminated after some halting criterion is met. In our experience, for 

systems with up to ~ 10 atoms in the cell the global minimum is often found within the first 

few generations, for systems with ~20 atoms in the cell this usually takes ~10-20 

generations. Among the important results of the simulation are the stable crystal structure 

and a set of robust metastable structures at given pressure-temperature conditions. 

USPEX allows one to find the stable crystal structure of a given compound at given external 

conditions (pressure, temperature, etc.). Moreover, it also produces a set of robust metastable 

structures. Unlike traditional simulation methods that only sample a small part of the free 

energy landscape close to some minimum, our method explores the entire free energy 

surface on which it locates the most promising areas. This allows one to see which aspects 

of structures (molecular vs. coordination or metallic vs. insulating structures, atomic 

coordination numbers, bond lengths and angles) are required for stability and therefore 

provides an interesting way of probing structural chemistry of matter at different conditions. 

Our present implementation in the USPEX code is very efficient for systems with up to ~100 

atoms in the unit cell. With additional developments we expect the method to be efficient 

also for larger systems. Since no symmetry constraints are imposed during simulations, 

symmetry is one of the results of our algorithm. This ensures that the resulting structures are 

mechanically stable and do not contain any unstable -phonons. 

This approach enables crystal structure prediction without any experimental input. 

Essentially, the only input is the chemical formula (then, it typically performs simulations 

for different numbers of formula units in the cell). However, in some cases, we would like 

to be able to predict also possible stoichiometry. One of the first steps in this direction was 

taken in [2.4], who have applied an ab initio evolutionary algorithm to find stable alloys. 

However, in their work the structure was fixed (only fcc- and bcc- structures were explored). 

It would be interesting to incorporate variable composition in our algorithm in order to find 



stable structures and likely stoichiometry in a given system. The present limitation of the 

method to ordered periodic structures can be overcome once it becomes possible to calculate 

free energies of disordered and aperiodic structures. Clearly, the quality of the global 

minimum found by USPEX depends on the quality of the ab initio description of the system. 

Present-day DFT simulations (e.g., within the GGA) are adequate for most situations, but it 

is known that these simulations do not fully describe van der Waals bonding and the 

electronic structure of Mott insulators. In both areas there are significant achievements, 

which can be used for calculating ab initio free energies and evaluation of structures in 

evolutionary simulations. 

2.1.1.2 Optimization 

In physics, mathematics, computational science, or management science, optimization refers 

to the selection of a best element from some set of available alternatives. 

In the simplest case, an optimization problem consists of maximizing or minimizing a real 

function by systematically choosing input values from within an allowed set and computing 

the value of the function. The generalization of optimization theory and techniques to other 

formulations comprises a large area of applied physics. More generally, optimization 

includes finding "best available" values of some objective function given a defined domain, 

including a variety of different types of objective functions and different types of domains. 

2.1.2 Magnetic Moment

The magnetic moment of a magnet is a quantity that determines the force that the magnet

can exert on electric currents and the torque that a magnetic field will exert on it. A loop of 

electric current, a bar magnet, an electron, a molecule, and a planet all have magnetic 

moments. 

Both the magnetic moment and magnetic field may be considered to be vectors having a 

magnitude and direction. The direction of the magnetic moment points from the south to 

north pole of a magnet. The magnetic field produced by a magnet is proportional to its 

magnetic moment as well. More precisely, the term magnetic moment normally refers to a 

system's magnetic dipole moment, which produces the first term in the multipole expansion 

of a general magnetic field. The dipole component of an object's magnetic field is symmetric 



about the direction of its magnetic dipole moment, and decreases as the inverse cube of the 

distance from the object. 

2.1.3 Objective: Design of modules for Magnetic Moment based 

Optimization in USPEX 

The second objective of the work was to design a code for USPEX which is able to do the 

optimization based on magnetic moment values. This includes to manage the overall task of 

magnetic moment based optimization, starting from to create user choice for magnetic 

moment based optimization, set it as fitness parameter, initialization of magnetic moment 

values, design of a function which can read the values of magnetic moment from result of 

ab initio calculation (most challenging task), write the values in output files and finally 

optimize by maximizing the value of magnetic moment. The aim was to enhance the 

functionality of the tool. The end result was to provide a tool which will attract the peoples 

all around the world who are working in the field of magnetism, to use this tool [2.5], as 

well as allow the people who are already working on this tool to give some novel findings 

based on this enhanced functionality and the result of work is able to fulfil these objectives. 

2.2 The need of Magnetic Moment based Optimization 



2.3 Feasibility Study 

2.3.1 Concept of feasibility test

Preliminary investigation examines project feasibility, the likelihood that system will be 

useful [2.6]. The main objective of the feasibility study is to test the Technical, Operational 

and Economical feasibility for adding new modules and debugging old running system. 

2.3.1.1 Technical Feasibility 



Is there sufficient support from the user to provide important feedback? 

Will the system be used and work properly if it is being developed and implemented? 

Will there be any resistance from the user that will undermine the possible 

application benefits? 

2.3.1.3 Economic Feasibility 

2.4 Analysis and Design 

2.4.1 Design Specifications

First of all, I have gone through the code, understan

algorithm and its operation. Based on the above analysis I have designed a brief outline of 

the design to be done in order to achieve the goal of magnetic moment based optimization. 

Then I discussed this with guide, one of the authors of the code and finalized the proper 

design scheme. 

2.4.2 Structured Analysis

 It is a set of techniques and graphical tools that allow the analyst to develop a new kind of 

system specifications that are easily understandable to the user. One tool for this is Data 

Flow Diagram (DFD). 

2.4.2.1 DFD of work flow for Magnetic Moment based Optimisation: 



Figure 2.1 DFD of work flow for Magnetic Moment based Optimisation in USPEX 



2.4.3 Design Objectives

System design is highly creative process, which can be greatly facilitated by the following 

stages: 

Proper problem definition 

Pictorial description of the existing system 

Set of requirements of the new system 

Overall design of the whole system 

During analysis the focus is on what needs to be done, independent of how it is done. During 

design, decisions are made about how the problem will be solved, first at a high level, then 

at increasingly detailed level. 

System design is the first stage in which the basic approach of solving the problem is 

selected. During system design, the overall structure and style is decided. The system 

architecture is the overall organization of the system into components called sub-systems. 

The architecture provides the context in which more detailed decisions are made in later 

design stages. By making high level decisions that apply to the entire system, the system 

designer partitions the problem into sub-systems so that several designers working 

independently on different subsystems can be further work. 

 The system designer must make the following decisions: 

Organize the system into sub-systems. 

Identify concurrency inherent in the system. 

Strategy for data stores (data structure) 

Handling global resources. 

Basic architecture for system. 

2.4.4 Logical design and code development

In this step of design we draw a logical model of our system of interest. On the basis of the 

structured analysis such as DFD, Structured English we draw a conceptual model of our 

system of interest. In project logical design is as follows: 



Start new simulation: 
if (INPUT_EA.txt file) 
 add magnetic moment as optimization parameter 
if (createORGstruc.m file) 
 set magnetic moment as optimization parameter 
if (initialize_POP_STRUC.m file) 
 add magnetic moment in initial population structure 
 and set magnetic moment value to zero for current generation 
if (ev_alg.m file) 
 create magneticMoments.dat file 
 perform magnetic moment based optimization for current generation 
 and set magnetic moment value to zero for offsprings 
if (readCalcFilesVASP.m file) 
 add a function call to read magnetic moments from ab initio code output 
if (writeOutput.m) 
 write magnetic moment values in magneticMoments.dat file 
if (writeGenerationOutput.m) 
 create BESTmagneticMoments.dat file 

and write BEST  magnetic moment value in BESTmagneticMoments.dat file 
design a function to read magnetic moment values 
: end Simulation 

2.4.5 Physical Design

After deciding what has to be done actual work of designing start in which we actually 

design the system based on the logical design. The final physical design appears as given 

below [2.7] 

Table 2.1 Modifications and addition of modules in USPEX for Magnetic Moment based Optimization 

Code Segment to be Modified Code Segment after Modification 

File Name: INPUT_EA.txt
% optimisation criteria 
enthalpy : optType (optimise by: enthalpy, 
volume, hardness, struc_order, aver_dist) 

% optimisation criteria 
mag_moment : optType (optimise by: 
enthalpy, volume, hardness, struc_order, 
aver_dist, mag_moment) 

File Name: createORGstruc.m
elseif strcmpi(optType, 'aver_dist') 
ORG_STRUC.optType = 5; 
End 

elseif strcmpi(optType, 'aver_dist') 
ORG_STRUC.optType = 5; 
elseif strcmpi(optType, 'mag_moment') 
ORG_STRUC.optType = 6; 
End 

File Name: initialize_POP_STRUC.m



,'Cluster_Volume',{}) ,'Cluster_Volume',{}, 'mag_moment',{}) 
POP_STRUC.POPULATION(i).survivingS
ince = 0; 

POP_STRUC.POPULATION(i).survivingS
ince = 0; 
POP_STRUC.POPULATION(i).mag_mom
ent = 0; 

File Name: ev_alg.m
unix(['echo "------- generation' 
num2str(POP_STRUC.generation) ' -------
" >>' POP_STRUC.resFolder 
'/enthalpies']); 

unix(['echo "------- generation' 
num2str(POP_STRUC.generation) ' -------
" >>' POP_STRUC.resFolder 
'/enthalpies']); 
if ORG_STRUC.optType == 6 
 unix(['echo "------- generation' 
num2str(POP_STRUC.generation) ' -------
" >>' POP_STRUC.resFolder 
'/magneticMoments.dat']); 
end 

fitness = -sqrt(fitness); 
end 
[nothing, ranking] = sort(fitness); 

fitness = -sqrt(fitness); 
elseif ORG_STRUC.optType == 6 
for fit_loop = 
1:length(POP_STRUC.POPULATION) 
fitness(fit_loop) = 
POP_STRUC.POPULATION(fit_loop).ma
g_moment; 
end 
end 
for i = 1 : length(fitness) 
try 
if 
POP_STRUC.POPULATION(i).FITNESS
ES(end) > 999999 % structure with errors 
fitness(i) = 1000000; 
end 
catch 
end 
end 
[nothing, ranking] = sort(fitness); 

,'Cluster_Volume',{}) ,'Cluster_Volume',{}, 'mag_moment',{}) 
OFF_STRUC.POPULATION(ind).survivin
gSince = 0; 

OFF_STRUC.POPULATION(ind).survivin
gSince = 0; 
OFF_STRUC.POPULATION(ind).mag_m
oment = 0; 

File Name: readCalcFilesVASP.m
[POP_STRUC.POPULATION(Ind_No).C
OORDINATES,POP_STRUC.POPULATI
ON(Ind_No).LATTICE] = read_VASP 
('CONTCAR', NCoords); 

[POP_STRUC.POPULATION(Ind_No).C
OORDINATES,POP_STRUC.POPULATI
ON(Ind_No).LATTICE] = read_VASP 
('CONTCAR', NCoords); 
if ORG_STRUC.optType == 6 



POP_STRUC.POPULATION(Ind_No).ma
g_moment = readMagneticMoment(); 
End 

File Name: writeOutput.m
unix(['echo ' 
num2str(POP_STRUC.POPULATION(Ind
_No).FITNESSES) ' >> ' 
ORG_STRUC.homePath '/' 
POP_STRUC.resFolder 
'/enthalpies_complete.dat']); 

unix(['echo ' 
num2str(POP_STRUC.POPULATION(Ind
_No).FITNESSES) ' >> ' 
ORG_STRUC.homePath '/' 
POP_STRUC.resFolder 
'/enthalpies_complete.dat']); 
if ORG_STRUC.optType == 6 
 unix(['echo ' 
num2str(POP_STRUC.bodyCount) ' ' 
num2str(POP_STRUC.POPULATION(Ind
_No).mag_moment) ' >>' 
ORG_STRUC.homePath '/' 
POP_STRUC.resFolder 
'/magneticMoments.dat']); 
end 

File Name: writeGenerationOutput.m
unix(['echo "------- generation' 
num2str(POP_STRUC.generation) ' -------
" >>' ORG_STRUC.homePath '/' 
POP_STRUC.resFolder 
'/BESTkpoints.dat']); 

unix(['echo "------- generation' 
num2str(POP_STRUC.generation) ' -------
" >>' ORG_STRUC.homePath '/' 
POP_STRUC.resFolder 
'/BESTkpoints.dat']); 
if ORG_STRUC.optType == 6 
    unix(['echo "------- generation' 
num2str(POP_STRUC.generation) ' -------
" >>' ORG_STRUC.homePath '/' 
POP_STRUC.resFolder 
'/BESTmagneticMoments.dat']); 
end 

unix(['echo ' 
num2str(POP_STRUC.PSO(POP_STRUC.
bestPSOstruc).enthalpy) ' >>' 
ORG_STRUC.homePath '/' 
POP_STRUC.resFolder 
'/BESTenthalpies.dat']); 

unix(['echo ' 
num2str(POP_STRUC.PSO(POP_STRUC.
bestPSOstruc).enthalpy) ' >>' 
ORG_STRUC.homePath '/' 
POP_STRUC.resFolder 
'/BESTenthalpies.dat']); 
if ORG_STRUC.optType == 6 
    unix(['echo ' num2str(-
1*POP_STRUC.PSO(POP_STRUC.bestP
SOstruc).fitness) ' >>' 
ORG_STRUC.homePath '/' 
POP_STRUC.resFolder 
'/BESTmagneticMoments.dat']); 
end 



unix(['echo ' 
num2str(POP_STRUC.POPULATION(PO
P_STRUC.ranking(1)).FITNESSES(end)) ' 
>>' ORG_STRUC.homePath '/' 
POP_STRUC.resFolder 
'/BESTenthalpies.dat']); 

unix(['echo ' 
num2str(POP_STRUC.POPULATION(PO
P_STRUC.ranking(1)).FITNESSES(end)) ' 
>>' ORG_STRUC.homePath '/' 
POP_STRUC.resFolder 
'/BESTenthalpies.dat']); 
if ORG_STRUC.optType == 6 
    unix(['echo ' num2str(-
1*fitness(POP_STRUC.ranking(1))) ' >>' 
ORG_STRUC.homePath '/' 
POP_STRUC.resFolder 
'/BESTmagneticMoments.dat']); 
end 

Function Designed to read values of magnetic moment from ab initio code output: 
readMagneticMoment.m 

function mag_moment = readMagneticMoment() 
global POP_STRUC 
global ORG_STRUC 

[nothing, magmomStr] = unix('./getStuff OSZICAR mag 11') 
magmom = str2num(magmomStr); 

if isempty(magmom) 
if isempty (POP_STRUC.POPULATION(Ind_No).Error) 
POP_STRUC.POPULATION(Ind_No).Error = 1; 
else 
POP_STRUC.POPULATION(Ind_No).Error = 
POP_STRUC.POPULATION(Ind_No).Error + 1; 
end 
mag_moment = 0; 
unix(['echo PROBLEM_read_VASP_OSZICAR ' num2str(Ind_No)]) 
unix('pwd'); 
else 
mag_moment = magmom(end); 
end 

2.4.6 Files and file names

2.4.6.1 MATLAB scripts (.m)

These are the main MATLAB script and function files, in which USPEX code is written. 

2.4.6.2 MATLAB variables (.mat) 

Used to store population structure in USPEX. 

2.4.6.3 .dat and .txt files 

These are the files extension for files to save data. 



2.5 Implementation 

2.5.1 System testing and quality assurance

In this phase the system is tested. Normally programs are written as a series of individual 

modules, these subjects to separate and detailed test. The system is then tested as a whole. 

The separate modules are brought together and tested as a complete system. The system is 

tested to ensure that interfaces between modules work (integration testing), the system works 

on the intended platform and with the expected volume of data (volume testing) and that the 

system does what the user requires (acceptance/beta testing).  

Levels of Quality Assurance: 

Alpha testing: In this test software goes through a phase in which errors and failures based 

on simulated user requirement are verified and studied. 

Beta testing: In this modified software is checked at actual user's site on a live environment. 

Note: THIS SYSTEM HAS SUCCESSFULLY GONE THROUGH BOTH TESTING.  



2.5.2 System Testing

2.5.2.1 Example 1: Magnetic Moment Based optimization for FePt 
system at a pressure of 100 Kilo Bar 

Figure 2.2 Variation in Magnetic Moment with Generation 

Figure 2.3 Structures in Generation 1st of calculation 



2.5.2.2 Example 2: Magnetic Moment Based optimization for FePt system 
at a pressure of 500 Kilo Bar 

Figure 2.4 Variation in Magnetic Moment with Generation 

Figure 2.5 Structures in Generation 1st of calculation 



2.6 Hardware and software selection 

For design purpose no specific hardware requirement is needed, a computer with normal 

hardware configuration having Linux based operating system with Matlab and at least one 

of the software codes for ab initio calculation is sufficient. For the purpose of application, 

hardware configuration should be good to get results in reasonable time with accuracy. 

2.7 Conclusion 

It has been a great pleasure for me to work on this exciting and challenging project. This 

project proved good for me as it provided practical knowledge of programming in 

MATLAB. It also provided knowledge of the VASP (an ab initio calculation method) which 

is very useful. This will provide better opportunities in future for new projects. 

2.8 Benefits 
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