

Contents

Chapter Name Page
No.

Chapter 1: Design of Graphical User Interface for NMAG
1.1 Introduction 7
1.2 The need of GUI designing for NMAG 11
1.3 Feasibility Study 13
1.4 Analysis and Design 14
1.5 Implementation 25
1.6 Hardware and software selection 30
1.7 Conclusion 30
1.8 Benefits 30
1.9 Future Work 31
1.10 References 31
Chapter 2: Design of modules for Magnetic Moment based Optimization in

USPEX
2.1 Introduction 35
2.2 The need of Magnetic Moment based Optimization 40
2.3 Feasibility Study 41
2.4 Analysis and Design 42
2.5 Implementation 49
2.6 Hardware and software selection 52
2.7 Conclusion 52
2.8 Benefits 52
2.9 Future Work 52

2.10 References 52

List of Figures

S.
No.

Figure
No.

Figure Name Page
No.

1 1.1 Discretised sphere using Cube as basic element 9
2 1.2 Discretised sphere using Tetrahedra as basic element 10
3 1.3 DFD for NMAG GUI work flow 16
4 1.4 The Main Window of NMAG GUI 20
5 1.5 Select Directory Window 20
6 1.6 Create Geometry Window 21
7 1.7 Create Mesh from Geometry Window 21
8 1.8 Create Simulation Script 22
9 1.9 Analyse Spatially Averaged Data Window 22

10 1.10 Mesh for the sphere geometry 26
11 1.11 Demag field in uniformly magnetised sphere for given parameters 27
12 1.12 Mesh for ellipsoid 28
13 1.13 Hysteresis loop for the ellipsoid for given parameters 29
14 2.1 DFD of work flow for Magnetic Moment based Optimisation in

USPEX
43

15 2.2 Variation in Magnetic Moment with Generation 50
16 2.3 Structures in Generation 1st of calculation 50
17 2.4 Variation in Magnetic Moment with Generation 51
18 2.5 Structures in Generation 1st of calculation 51

List of Tables

S.
No.

Table
No.

Table Name Page
No.

1 2.1 Modifications and addition of modules in USPEX for Magnetic Moment based
Optimization

45

S.
No.

Chapter
No.

Chapter Name Page
No.

1 1.1 Introduction 7

2 1.1.1 NMAG Overview 7

3 1.1.1.1 NMAG Philosophy 7

4 1.1.1.2 Micro magnetic Modelling 8

5 1.1.2 Graphical User Interface (GUI) 10

6 1.1.3 Objective: Design of Graphical User Interface for
NMAG

10

7 1.2 The need of GUI designing for NMAG 11

8 1.2.1 Productivity 11

9 1.2.2 Accessibility 11

10 1.2.3 Limitation of Existing System 12

11 1.2.4 Advantage of proposed system 12

12 1.3 Feasibility Study 13

13 1.3.1 Concept of feasibility test 13

14 1.3.1.1 Technical Feasibility 13

15 1.3.1.2 Operational Feasibility 13

16 1.3.1.3 Economic Feasibility 14

17 1.4 Analysis and Design 14

18 1.4.1 Design Specifications 14

19 1.4.1.1 Design specifications from key owner of the tool 14

20 1.4.1.2 Getting Information from the review of Existing
Software Tool

15

21 1.4.2 Structured Analysis 15

22 1.4.2.1 DFD for NMAG GUI work flow 16

23 1.4.3 Design Objectives 17

24 1.4.3.1 User Interface, Input and Output Design 17

25 1.4.3.2 System Design 17

26 1.4.4 Logical design and code development 19

27 1.4.5 Physical Design 19

28 1.4.6 Files and file names 23

29 1.4.6.1 geo files (.geo) 23

30 1.4.6.2 mesh files (.nmesh, .nmesh.h5) 23

31 1.4.6.3 Simulation scripts (.py) 23

32 1.4.6.4 Data files (.ndt) 23

33 1.4.6.5 Data files (.h5) 23

34 1.4.6.6 File names for data files 23

35 1.4.6.7 File names for log files 24

36 1.4.6.8 .dat and .txt files 24

37 1.4.6.9 .vtk files 24

38 1.4.6.10 .ps and .pdf files 24

39 1.5 Implementation 25

40 1.5.1 System testing and quality assurance 25

41 1.5.2 System Testing 25

42 1.5.2.1 Example 1: Demag field in uniformly magnetised
sphere

25

43 1.5.2.2 Example 2: Simple hysteresis loop 27

44 1.6 Hardware and software selection 30

45 1.7 Conclusion 30

46 1.8 Benefits 30

47 1.9 Future Work 31

48 1.10 References 31

1.1 Introduction

1.1.1 NMAG Overview

Nmag is a flexible finite element micro magnetic simulation package with user interface

based on the Python programming language [1.1]. It has been developed at the University

of Southampton with substantial contributions from Hans Fangohr, Thomas Fischbacher,

Matteo Franchin, Giuliano Bordignon, Jacek Generowicz, Andreas Knittel, Michael Walter,

and Maximilian Albert.

The main features of Nmag are:

based on finite elements (suitable for non-cuboidal structures)

problem description in Python, therefore high degree of flexibility

inbuilt mesh post processing tools

efficient data storage (binary compressed) and extraction into vtk files (of course the

raw data can be extracted)

arbitrary crystal anisotropy

(pseudo) periodic boundary conditions ("macro geometry approach")

Spin torque transfer (Zhang-Li model for uniform current density)

Supports use of matrix compression library (HLib) for BEM

This software was developed at the University of Southampton, United Kingdom. It is

released under the GNU General Public License (GNU GPL) as published by the Free

Software Foundation.

1.1.1.1 NMAG Philosophy

Many specialized simulation codes used in research today consist of a highly specialized

core application which initially was written to simulate the behaviour of some very specific

system. Often, the core application then evolved into a more broadly applicable tool through

the introduction of additional parameters. Some simulation codes reach a point where it

becomes evident that they need an amount of flexibility that can only be provided by

including some script programming capabilities [1.2].

The approach underlying Nmag turns this very common pattern of software evolution

(which we also have seen in web browsers, CAD software, word processors, etc.) on its

head: rather than gradually providing more and more flexibility in an ad-hoc manner through

adding configuration parameters, slowly evolving into an extensive specialized

programming language, Nmag starts out as an extension to a widely used programming

language (Python) from which it gains all its flexibility and evolves towards more

specialized notions to conveniently define and study the properties of very specific physical

systems [1.3].

The main advantage of this approach is two-fold: first, we do not gradually evolve another

ad-hoc (and potentially badly implemented) special purpose programming language.

Second, by drawing upon the capabilities of a well-supported existing framework for

flexibility, we get a lot of additional power for free: the user can employ readily available

and well supported Python libraries for tasks such as data post-processing and analysis, e.g.

generating images for web pages etc. In addition to this, some users may benefit from the

capability to use Nmag interactively from a command prompt, which can be very helpful

during the development phase of an involved simulation script [1.4].

At present, Nmag is based on the Python programming language. This seems to be a

somewhat reasonable choice at present, as Python is especially friendly towards casual users

who do not want to be forced to first become expert programmers before they can produce

any useful results. Furthermore, Python is quite widespread and widely supported these

days.

1.1.1.2 Micro magnetic Modelling

Micro magnetics deals with the interactions between magnetic moments on sub-micrometre

length scales. These are governed by several competing energy terms. Dipolar energy is the

energy which causes magnets to align north to south pole. Exchange energy will attempt to

make the magnetic moments in the immediately surrounding space lie parallel to one another

(if the material is ferromagnetic) or anti parallel to one another (if anti ferromagnetic).

Anisotropy energy is low when the magnetic moments are aligned along a particular crystal

direction. Zeeman energy is at its lowest when magnetic moments lie parallel to an external

magnetic field.

Since the most efficient magnetic alignment (also known as a configuration) is the one in

which the energy is lowest, the sum of these four energy terms will attempt to become as

small as possible at the expense of the others, yielding complex physical interactions. The

competition of these interactions under different conditions is responsible for the overall

behaviour of a magnetic system.

To carry out micro magnetic simulations, a set of partial differential equations have to be

solved repeatedly. In order to be able to do this, the simulated geometry has to be spatially

discretised. The two methods that are most widely spread in micro magnetic modelling are

the so-called finite difference (FD) method and the finite element (FE) method. With either

the FD or the FE method, we need to integrate the Landau-Lifshitz and Gilbert equation

numerically over time (this is a coupled set of ordinary differential equations). All these

calculations are carried out by the Micro magnetic packages and the user does not have to

worry about these.

The finite difference method subdivides space into many small cuboids. Sometimes the

name cell is used to describe one of these cuboids. (Warning: in finite difference simulations,

the simulated geometry is typically enclosed by a (big) cuboid which is also referred to as

simulation cell. Usually (!) it is clear from the context which is meant.) Typically, all

simulation cells in one finite difference simulation have the same geometry. A typical size

for such a cell could be a cube of dimensions 3nm by 3nm by 3nm.

shows an

approximation of the shape of the sphere by cubes. This is the finite difference approach.

For clarity, rather larger cubes were chosen to resolve the sphere in an actual simulation

one would typically use a much smaller cell size in order to resolve geometry better.

Figure 1.1 Discretised sphere using Cube as basic element

On the other hand, the finite element method (typically) subdivides space into many small

tetrahedra. The tetrahedra are sometimes referred to as the (finite element) mesh elements.

Typically, the geometry of these tetrahedra does vary throughout the simulated region. This

allows combining the tetrahedra to approximate complicated geometries. The spherical

shape is approximated better than with the finite differences.

Figure 1.2 Discretised sphere using Tetrahedra as basic element

The first step in setting up a micro magnetic simulation is to describe the geometry. In the

case of finite difference calculations, it will depend on the package to be used and how small

simulation cells should be. In the case of finite element calculations, a finite element mesh

is to be created first and then proceed for micro magnetic modelling and simulation.

1.1.2 Graphical User Interface (GUI)

In computing, a graphical user interface (GUI) is a type of user interface that allows users

to interact with electronic devices with images rather than text commands. A GUI represents

the information and actions available to a user through graphical icons and visual indicators

such as secondary notation, as opposed to text-based interfaces, typed command labels or

text navigation. The actions are usually performed through direct manipulation of the

graphical elements. A GUI uses a combination of technologies and devices to provide a

platform that the user can interact with, for the tasks of gathering and producing information.

1.1.3 Objective: Design of Graphical User Interface for NMAG

The first objective of work was to design a highly interactive Graphical User Interface for

the scientific tool NMAG. This includes to manage the overall task of micro magnetic

simulation using NMAG, starting from creating structures, generating finite element mesh,

defining properties, creating simulation script (most challenging task), run the calculation

and at the end to visualize and analyse the results, through the Graphical User Interface. The

aim was to enhance the functionality of the tool by making it more users friendly. The end

result was to provide a tool which will help the users who have good understanding of the

tool, by reducing the time to design the problem [1.5], as well as to help the peoples who

are new to this tool by providing them appropriate way to proceed and the result of work is

able to fulfil these objectives.

1.2 The need of GUI designing for NMAG

The existing system is manual.

Wastage of paper and other resources.

Selection procedure takes too much time.

Huge amount of data gets collected during data entry.

Consumes lot of time.

Delay in results.

1.3 Feasibility Study

1.3.1 Concept of feasibility test

Preliminary investigation examines project feasibility, the likelihood that system will be

useful. The main objective of the feasibility study is to test the Technical, Operational and

Economical feasibility for adding new modules and debugging old running system.

1.3.1.1 Technical Feasibility

Is there sufficient support from the user to provide important feedback?

Will the system be used and work properly if it is being developed and implemented?

Will there be any resistance from the user that will undermine the possible

application benefits?

1.3.1.3 Economic Feasibility

1.4 Analysis and Design

1.4.1 Design Specifications

1.4.1.1 Design specifications from key owner of the tool

A brief plan of GUI, provided by Prof. Hans Fangohr (key owner of tool), is as follows:

Assumption:
- allow only one material
- Uniform constant magnetic external magnetic field,
On start-up:
 - Ask user whether current directory should be the project directory
 If not, allow to navigate to project directory, or to create a new subdirectory (if possible)
1. Create Geometry
2. Mesh geometry

3. Create simulation script
4. Run simulation
5. Analyse results
6. Visualise

1. Create Geometry:
 - can offer default geometries, like
 - sphere (ellipsoid), radius 50nm
 - cube (thin film), l=50nm
 - Cylinder, l=100nm, r=15nm
 Ideally: allow user to enter origins, corners, radii, then write .geo file for this.
 - should all be centred around origin
 - express units in nanometre
 -> .geo file
2. Mesh geometry / Create mesh:
 - list all *.geo files in directory and ask user to select one (if there are more than one)
 - provide buttons to
 - assisted creation of geometry file (-> takes us to 'Create Geometry')
 - visualise geometry
 - generate mesh
 - edit .geo file
3. Write simulation script:
 - Select mesh (could propose mesh we have dealt with last as the default)
 - select Material (ideally from list (initially Py, Co, Ni, Fe).
 Allow user to modify these Material parameters manually.
 Includes anisotropy
 - select time dependent simulation
 - How long, how often to save data, what data to save
 - Suggestion:
 - define save interval for averaged data
 - define save interval for (spatially resolved) magnetisation (m)
 - define save interval for all (spatially resolved) fields
 Question: communicate to user that saving spatially resolved fields will save averages
automatically
 - Hysteresis loop:
4. Run simulation

1.4.1.2 Getting Information from the review of Existing Software Tool

I have gone through the detailed software description and working, made discussions with

guide and list out the features expected by a user while working on GUI.

1.4.2 Structured Analysis

 It is a set of techniques and graphical tools that allow the analyst to develop a new kind of

system specifications that are easily understandable to the user. One tool for this is Data

Flow Diagram (DFD).

1.4.2.1 DFD for NMAG GUI work flow

Figure 1.3 DFD for NMAG GUI work flow

1.4.3 Design Objectives

1.4.3.1 User Interface, Input and Output Design

User interface, input and output design begins the systems design phase of the SDLC. The

user interface should include all the tasks, commands and communication between users and

the system. In GUI environment a user can display and work with multiple windows on the

single screen. Input Design Issues during input design, determine how data will be captured

and entered into the system. Data capture is the identification and recording of source data.

Data entry is the process of converting source data into computer readable form and entering

it into or from system.

Input Design has six main objectives:

To select a suitable input and data entry method

To reduce the input volume

To design attractive data entry screen

To use validation check to reduce input errors

To design required source documents

To develop effective input control

Output Design issues include:

What is the purpose of output?

Who wants the information, why it is needed and how it will be used?

Will the output be printed, viewed on screen or both?

Reports like any other elements of the user-computer interface should be attractive,

professional, and easy to use. System analysts should realize that printed output is highly

visible and manages sometimes judges project by the quality of reports they receive.

1.4.3.2 System Design

System design is highly creative process, which can be greatly facilitated by the following

stages:

Proper problem definition

Pictorial description of the existing system

Set of requirements of the new system

Overall design of the whole system

During analysis the focus is on what needs to be done, independent of how it is done. During

design, decisions are made about how the problem will be solved, first at a high level, then

at increasingly detailed level.

System design is the first stage in which the basic approach of solving the problem is

selected. During system design, the overall structure and style is decided. The system

architecture is the overall organization of the system into components called sub-systems.

The architecture provides the context in which more detailed decisions are made in later

design stages. By making high level decisions that apply to the entire system, the system

designer partitions the problem into sub-systems so that several designers working

independently on different subsystems can be further work.

 The system designer must make the following decisions:

Organize the system into sub-systems.

Identify concurrency inherent in the system.

Strategy for data stores (data structure)

Handling global resources.

Basic architecture for system.

Input design: It is a process of converting user oriented inputs to a computer-based format.

Input data are collected and organized into group of similar data once identified; appropriate

input media are selected for processing. The goal of designing input data is to make data

entry easy, logical and free from errors as possible in entering data.

Output design: Computer is the most important and direct source of information to the user.

Efficient intelligible output design should improv

and help in decision making. The goal of designing output data is that it must be in user

understandable form and consistent.

1.4.4 Logical design and code development

In this step of design we draw a logical model of our system of interest. On the basis of the

structured analysis such as DFD, Structured English we draw a conceptual model of our

system of interest. In work logical design is as follows:

Start new simulation:
if (Select Directory)

either create directory
or change directory

 or exit
if (Create Geometry)
 either select from default geometries
 insert parameters, edit geometry, view geometry
 or create custom geometry
 insert parameters, edit geometry, view geometry
 or exit
if (Create Mesh from geometry)
 either create/edit/view geometry
 or generate mesh
 view mesh
 or exit
if (Create Simulation Script)
 insert parameters
 create script
 view/edit script
 exit
if (Run Simulation)
 start calculation
if (Restart Run)
 restart calculation
if (Analyse Spatially Averaged Data)
 either draw different plots using Xmgrace or gnuplot
 or exit
if (Visualise)
 Visualise calculation results using Mayavi
if (Exit NMAG)
 exit from NMAG
: end Simulation

1.4.5 Physical Design

After deciding what has to be done actual work of designing start in which we actually

design the system based on the logical design. The final physical design appears as given

below [1.7].

1.4.6 Files and file names [1.2]

1.4.6.1 geo files (.geo)

This file contains specification for geometry.

1.4.6.2 mesh files (.nmesh, .nmesh.h5)

Files that contain a finite element mesh.

1.4.6.3 Simulation scripts (.py)

Files that contain simulation program code. The ending is (by convention) .py which reflects

that the programming language used is Python.

1.4.6.4 Data files (.ndt)

ndt stands for Nmag Data Table. ndt files are ascii files where each row corresponds to one-

time step (or, more generally, configuration of the system). The columns contain:

_ metadata such as

 a unique identifier for every row

 the time at which the row was written

_ (spatially) averaged field data

The first two lines contain information about what data is stored in the various columns:

1. The first line provides a header

2. The second line provides the SI units

All other lines contain the actual data.

The file can be loaded into any data processing software (such as MS Excel, Origin, Matlab,

Gnuplot ...). However, often it is more convenient to use the ncol tool to select the relevant

columns, and only to pass the filtered data to a post-processing (e.g. plotting) program. Data

is written into the ndt file whenever the save_data_ method of the simulation object is called.

1.4.6.5 Data files (.h5)

The h5 data files store spatially resolved fields. The format is a binary and compressed hdf5

format to which we have convenient access via the pytables package for Python. The user

should not have to worry about reading this file directly, but use the nmagpp tool to access

the data.

1.4.6.6 File names for data files

The filenames for the ndt and h5 data files are given by concatenation of the simulation

name, the extension _dat. and the extension (.h5 or .ndt).

When a simulation object is created, for example in a file called mybar.py:

import nmag

sim = nmag.Simulation(name="bar")

then the simulation name is bar.

If no name is provided, i.e. the file mybar.py starts like this:

import nmag

sim = nmag.Simulation()

then the simulation name will be the run id. The run id is the filename of the simulation

script (without the .py extension), i.e. the simulation name then will be mybar.

Let us assume for the rest of this section that the simulation name is bar. Once we use the

save_data_ command, for example like this:

sim.save_data()

a ndt file will be created, with name bar_dat.ndt (= bar + _dat. + ndt).

Similarly, if we write the fields spatially resolved:

sim.save_data(fields='all')

a h5 data file with name bar_dat.h5 (= bar + _dat. + h5) will be created.

1.4.6.7 File names for log files

A log file is created that stores (most of) the messages displayed to stdout (i.e. the screen).

The name of the log file starts with the name of the simulation script (without the .py

extension), and ends with _log.log. For example, a simulation script with name mybar.py

will have an associated log file with name mybar_log.log. Another three files will be created

if the (undocumented) --dumpconf switch is provided. These are:

_ mybar_log.conf: This can be used to configure what data is logged.

_ mybar_ocaml.conf: Configuration of some variables used in the ocaml code

_ mybar_nmag.conf: Some variables used in the nmag code

1.4.6.8 .dat and .txt files

These are the files extension for files to save some specific data after extracting the main

files, so as to plot by any plotting tool.

1.4.6.9 .vtk files

These files store results for visualization tool like Mayavi

1.4.6.10 .ps and .pdf files

These are the extensions to store the results in proper printable format.

1.5 Implementation

1.5.1 System testing and quality assurance

In this phase the system is tested. Normally programs are written as a series of individual

modules, these subjects to separate and detailed test. The system is then tested as a whole.

The separate modules are brought together and tested as a complete system. The system is

tested to ensure that interfaces between modules work (integration testing), the system works

on the intended platform and with the expected volume of data (volume testing) and that the

system does what the user requires (acceptance/beta testing).

Levels of Quality Assurance:

Alpha testing: In this test software goes through a phase in which errors and failures based

on simulated user requirement are verified and studied.

Beta testing: In this modified software is checked at actual user's site on a live environment.

Note: THIS SYSTEM HAS SUCCESSFULLY GONE THROUGH BOTH TESTING.

1.5.2 System Testing

1.5.2.1 Example 1: Demag field in uniformly magnetised sphere [1.2]

.geo file
algebraic3d

 solid main = sphere (0, 0, 0; 40)-maxh=3.0 ;
 tlo main;

Mesh:

Figure 1.10 Mesh for the sphere geometry

Simulation Script:
import sys
sys.argv.append('--clean')
import nmag
from nmag import SI

#create simulation object
sim = nmag.Simulation()

define magnetic material
Py = nmag.MagMaterial(name = 'Py',
 Ms = SI(1e6, 'A/m'),
 exchange_coupling = SI(13.0e-12, 'J/m'))

load mesh
sim.load_mesh('sphere1.nmesh.h5',
 [('sphere', Py)],
 unit_length = SI(1e-9, 'm'))

set initial magnetization
sim.set_m([1,0,0])

set external field
sim.set_H_ext([0,0,0], SI('A/m'))

Save and display data in a variety of ways
sim.save_data(fields='all') # save all fields spatially resolved

together with average data

sample demag field through sphere
for i in range(-10,11):
 x = i*1e-9 #position in meters
 H_demag = sim.probe_subfield_siv('H_demag', [x,0,0])
 print "x =", x, ": H_demag = ", H_demag

Results:

Figure 1.11 Demag field in uniformly magnetised sphere for given parameters

1.5.2.2 Example 2: Simple hysteresis loop [1.2]

.geo files:

algebraic3d
 solid test = ellipsoid (0, 0, 0; 30.0, 0, 0; 0, 10.0, 0; 0, 0, 10.0) -maxh=3;
 tlo test;

Mesh:

Figure 1.12 Mesh for ellipsoid

Simulation Script:
import nmag
from nmag import SI, at

#create simulation object
sim = nmag.Simulation()

define magnetic material
Py = nmag.MagMaterial(name="Py",
 Ms=SI(1e6,"A/m"),
 exchange_coupling=SI(13.0e-12, "J/m"))

load mesh: the mesh dimensions are scaled by 0.5 nm

sim.load_mesh("ellipsoid.nmesh.h5",
 [("ellipsoid", Py)],
 unit_length=SI(1e-9,"m"))

set initial magnetization
sim.set_m([1.,0.,0.])

Hs = nmag.vector_set(direction=[1.,0.01,0],
 norm_list=[1.00, 0.95, [], -1.00,
 -0.95, -0.90, [], 1.00],
 units=1e6*SI('A/m'))

loop over the applied fields Hs
sim.hysteresis(Hs, save=[('restart','fields', at('convergence'))])

Results:

Figure 1.13 Hysteresis loop for the ellipsoid for given parameters

1.6 Hardware and software selection

A Linux based system having good hardware configuration and minimum of following

software will be required to work the system in its designated way:

Python for scripting

Text editor preferably gedit

Netgen for geometry visualization and mesh generation

Proper set up having basic NMAG packages for necessary calculations

Xmgrace or GNU plot for graphical result display

Mayavi for pictorial results visualisation

1.7 Conclusion

It has been a great pleasure for me to work on this exciting and challenging project. This

project proved good for me as it provided practical knowledge of programming in Python.

It also provides knowledge about the latest technology used in developing various user

interfaces that will be great demand in future. This will provide better opportunities and

guidance in future for developing projects.

1.8 Benefits

1.10 References

[1.1] NMAG Website: http://nmag.soton.ac.uk/nmag/index.html.

[1.2] NMAG User Manual: http://nmag.soton.ac.uk/nmag/current/manual/singlehtml/manual.html.

[1.3] Thomas Fischbacher, Matteo Franchin, Giuliano Bordignon,, Hans Fangohr, A Systematic Approach to
Multiphysics Extensions of Finite-Element-Based Micro magnetic Simulations: Nmag, IEEE
Transactions on Magnetics 43, 6, 2896-2898 (2007), online at http://eprints.soton.ac.uk/46725/.

[1.4] Thomas Fischbacher, Matteo Franchin, Giuliano Bordignon, Andreas Knittel, Hans Fangohr, Parallel
execution and scriptability in micro magnetic simulations, Journal of Applied Physics 105, 07D527
(2009), online at http://link.aip.org/link/?JAPIAU/105/07D527/1.

S.
No.

Chapter
No.

Chapter Name Page
No.

1 2.1 Introduction 35

2 2.1.1 USPEX Overview 35

3 2.1.1.1 USPEX Philosophy 36

4 2.1.1.2 Optimization 39

5 2.1.2 Magnetic Moment 39

6 2.1.3 Objective: Design of modules for Magnetic
Moment based Optimization in USPEX

40

7 2.2 The need of Magnetic Moment based
Optimization

40

8 2.3 Feasibility Study 41

9 2.3.1 Concept of feasibility test 41

10 2.3.1.1 Technical Feasibility 41

11 2.3.1.2 Operational Feasibility 41

12 2.3.1.3 Economic Feasibility 42

13 2.4 Analysis and Design 42

14 2.4.1 Design Specifications 42

15 2.4.2 Structured Analysis 42

16 2.4.2.1 DFD of work flow for Magnetic Moment based
Optimisation:

42

17 2.4.3 Design Objectives 44

18 2.4.4 Logical design and code development 44

19 2.4.5 Physical Design 45

20 2.4.6 Files and file names 48

21 2.4.6.1 MATLAB scripts (.m) 48

22 2.4.6.2 MATLAB variables (.mat) 48

23 2.4.6.3 .dat and .txt files 48

24 2.5 Implementation 49

25 2.5.1 System testing and quality assurance 49

26 2.5.2 System Testing 50

27 2.5.2.1 Example 1: Magnetic Moment Based optimization
for FePt system at a pressure of 100 Kilo Bar

50

28 2.5.2.2 Example 2: Magnetic Moment Based optimization
for FePt system at a pressure of 500 Kilo Bar

51

29 2.6 Hardware and software selection 52

30 2.7 Conclusion 52

31 2.8 Benefits 52

32 2.9 Future Work 52

33 2.10 References 52

2.1 Introduction

2.1.1 USPEX Overview

USPEX (Universal Structure Prediction: Evolutionary Xtallography) is a method developed

jointly by Artem R. Oganov and Colin W. Glass, Andriy O. Lyakhov and Qiang Zhu, and

implemented in the same-name code written by Andriy Lyakhov and Colin W. Glass and

Qiang Zhu mainly at Stony Brook University, New York [2.1]. USPEX can be used to

predict stable crystal structures at given P-T conditions, knowing only the chemical

composition (or to predict both the stable compositions and structures, given the element

types). Many previous attempts to solve crystal structure problem were plagued by low

success rate and extreme computational costs that prevented full ab initio studies. USPEX

avoids both of these problems. In fact, "uspekh" means "success" in Russian - which

highlights a nearly 100% success rate for this method.

USPEX can also be used for finding low-energy metastable phases, as well as stable

structures of nanoparticles, surface reconstructions, molecular packings in organic crystals,

and for searching for materials with desired physical (mechanical, electronic) properties.

The USPEX code is based on an efficient evolutionary algorithm developed by A.R.

Oganov's group, but also has options for using alternative methods (random sampling,

metadynamics, corrected PSO algorithms). USPEX is interfaced with many DFT or classical

codes, such as VASP, SIESTA, GULP, Quantum Espresso, CP2K, and so on.

USPEX is characterized not only by high efficiency and reliability (witnessed by the recent

blind test of inorganic crystal structure prediction, where it has scored the highest success)

but also by state-of-the art analysis and visualization tools developed by Mario Valle

specifically for the USPEX project. These tools enable rapid visual analysis of large datasets,

with interactive screens and possibilities not only to visualize crystal structures and analyse

them (in terms of fingerprint functions, space groups, bond lengths and angles, order

parameters, etc.), but to explore correlations between structures and their properties,

energies, and simulation parameters. USPEX is based on a carefully tuned structure

prediction-specific evolutionary algorithm. USPEX searches for the structure corresponding

to the global minimum of the ab initio free energy. The quality of trial structures is judged

by the ab initio free energy calculated by an external ab initio code (currently for this,

USPEX code can use VASP and SIESTA, but developers may include other codes as well).

The use of simpler methods, e.g. based on inter atomic potentials, is also possible - in this

case the structure prediction is extremely fast.

Features of the code:

Structure prediction with just the chemical composition.

Incorporation of partial structural information is possible

Constraining search to fixed experimental cell parameters, or fixed cell

shape, or fixed cell volume,

Starting structure search from known or hypothetical structures.

Efficient constraint techniques, which eliminate unphysical and redundant regions

of the search space.

Handling of molecules (rather than atoms), fully or partly rigid is possible.

Restart facilities, enabling calculations to be continued from any point along the

evolutionary trajectory (if needed, with changed parameters).

Powerful visualisation and analysis techniques implemented in the STM4 code (by

M.Valle), fully interfaced with USPEX.

USPEX is interfaced with VASP, SIESTA and GULP codes. There are development

interfaces with ABINIT, LAMMPS, and MD++.

Job submission from local workstation to remote supercomputers is possible.

Job submission via grid is possible (grid part by S. Tikhonov and S. Sobolev).

Many new features are now in progress.

This software was developed mainly at the Stony Brook University, New York. It is free for

academic use.

2.1.1.1 USPEX Philosophy

The USPEX (Universal Structure Predictor: Evolutionary Xtallography) code possesses

rather unique capabilities: it allows one to predict the stable structure of a given compound

at given conditions (pressure, temperature) just from the knowledge of the chemical

composition and using no experimental information [2.2]. From the beginning, this non-

empirical crystal structure prediction was the main aim of the USPEX project. This is

achieved by merging a specially developed evolutionary algorithm featuring local

optimisation and real-space representation with ab initio simulations. In addition to this fully

non-empirical search, USPEX allows one to predict also a large set of robust metastable

structures and perform several types of simulations using various degrees of prior

knowledge. The problem of crystal structure prediction is very old and does, in fact,

constitute the central problem of theoretical crystal chemistry. In 1988 John Maddox [2.3]

wrote that:

predict the structure of even the simplest crystalline solids from a knowledge of their chemical

Following is the working of USPEX:

1. The first generation is produced by a random-number generator (only those structures

which satisfy the hard constraints are allowed). Non-random start from some good structures

provided by user is also possible.

2. Among the locally optimised structures, a certain number of the worst ones are rejected,

and the remaining structures participate in creating the next generation through heredity,

permutation and mutation. Selection probabilities for variation operators are derived from

the rank of their fitness (i.e. their calculated free energies).

During heredity, new structures are produced by matching slices (chosen in random

directions and with random positions) of the parent structures. A certain fraction of

structures is produced by randomly shifting these slices in their matching plane, and this

attice vectors

matrix elements (for this matrix we use the upper-triangular form in order to avoid

unphysical whole-cell rotations) is done by taking a weighted average, using random

weights. A certain fraction of the new generation is created by permutation (i.e. switching

identities of two or more atoms in a structure) and mutation (random change of the cell

vectors and/or atomic positions). Lattice mutation essentially incorporates into this method

the ideas of metadynamics, where new structures are found by building up cell distortions

of some known structure. Unlike in metadynamics, in this method the distortions are not

accumulated, so to obtain new structures the strain components should be large.

To avoid pathological lattices all newly obtained structures are rescaled to have a certain

volume, which is then relaxed by local optimisation. The value of the rescaling volume is

not very important and can be easily estimated either from the equation of state of some

known structure or by optimising a random structure; this value is used only for the first

generation and for subsequent generations is adapted to the volumes of several best found

structures. A specified number of the best structures (usually, one) of the current generation

always survive, mate and compete in the next generation.

3. The simulation is terminated after some halting criterion is met. In our experience, for

systems with up to ~ 10 atoms in the cell the global minimum is often found within the first

few generations, for systems with ~20 atoms in the cell this usually takes ~10-20

generations. Among the important results of the simulation are the stable crystal structure

and a set of robust metastable structures at given pressure-temperature conditions.

USPEX allows one to find the stable crystal structure of a given compound at given external

conditions (pressure, temperature, etc.). Moreover, it also produces a set of robust metastable

structures. Unlike traditional simulation methods that only sample a small part of the free

energy landscape close to some minimum, our method explores the entire free energy

surface on which it locates the most promising areas. This allows one to see which aspects

of structures (molecular vs. coordination or metallic vs. insulating structures, atomic

coordination numbers, bond lengths and angles) are required for stability and therefore

provides an interesting way of probing structural chemistry of matter at different conditions.

Our present implementation in the USPEX code is very efficient for systems with up to ~100

atoms in the unit cell. With additional developments we expect the method to be efficient

also for larger systems. Since no symmetry constraints are imposed during simulations,

symmetry is one of the results of our algorithm. This ensures that the resulting structures are

mechanically stable and do not contain any unstable -phonons.

This approach enables crystal structure prediction without any experimental input.

Essentially, the only input is the chemical formula (then, it typically performs simulations

for different numbers of formula units in the cell). However, in some cases, we would like

to be able to predict also possible stoichiometry. One of the first steps in this direction was

taken in [2.4], who have applied an ab initio evolutionary algorithm to find stable alloys.

However, in their work the structure was fixed (only fcc- and bcc- structures were explored).

It would be interesting to incorporate variable composition in our algorithm in order to find

stable structures and likely stoichiometry in a given system. The present limitation of the

method to ordered periodic structures can be overcome once it becomes possible to calculate

free energies of disordered and aperiodic structures. Clearly, the quality of the global

minimum found by USPEX depends on the quality of the ab initio description of the system.

Present-day DFT simulations (e.g., within the GGA) are adequate for most situations, but it

is known that these simulations do not fully describe van der Waals bonding and the

electronic structure of Mott insulators. In both areas there are significant achievements,

which can be used for calculating ab initio free energies and evaluation of structures in

evolutionary simulations.

2.1.1.2 Optimization

In physics, mathematics, computational science, or management science, optimization refers

to the selection of a best element from some set of available alternatives.

In the simplest case, an optimization problem consists of maximizing or minimizing a real

function by systematically choosing input values from within an allowed set and computing

the value of the function. The generalization of optimization theory and techniques to other

formulations comprises a large area of applied physics. More generally, optimization

includes finding "best available" values of some objective function given a defined domain,

including a variety of different types of objective functions and different types of domains.

2.1.2 Magnetic Moment

The magnetic moment of a magnet is a quantity that determines the force that the magnet

can exert on electric currents and the torque that a magnetic field will exert on it. A loop of

electric current, a bar magnet, an electron, a molecule, and a planet all have magnetic

moments.

Both the magnetic moment and magnetic field may be considered to be vectors having a

magnitude and direction. The direction of the magnetic moment points from the south to

north pole of a magnet. The magnetic field produced by a magnet is proportional to its

magnetic moment as well. More precisely, the term magnetic moment normally refers to a

system's magnetic dipole moment, which produces the first term in the multipole expansion

of a general magnetic field. The dipole component of an object's magnetic field is symmetric

about the direction of its magnetic dipole moment, and decreases as the inverse cube of the

distance from the object.

2.1.3 Objective: Design of modules for Magnetic Moment based

Optimization in USPEX

The second objective of the work was to design a code for USPEX which is able to do the

optimization based on magnetic moment values. This includes to manage the overall task of

magnetic moment based optimization, starting from to create user choice for magnetic

moment based optimization, set it as fitness parameter, initialization of magnetic moment

values, design of a function which can read the values of magnetic moment from result of

ab initio calculation (most challenging task), write the values in output files and finally

optimize by maximizing the value of magnetic moment. The aim was to enhance the

functionality of the tool. The end result was to provide a tool which will attract the peoples

all around the world who are working in the field of magnetism, to use this tool [2.5], as

well as allow the people who are already working on this tool to give some novel findings

based on this enhanced functionality and the result of work is able to fulfil these objectives.

2.2 The need of Magnetic Moment based Optimization

2.3 Feasibility Study

2.3.1 Concept of feasibility test

Preliminary investigation examines project feasibility, the likelihood that system will be

useful [2.6]. The main objective of the feasibility study is to test the Technical, Operational

and Economical feasibility for adding new modules and debugging old running system.

2.3.1.1 Technical Feasibility

Is there sufficient support from the user to provide important feedback?

Will the system be used and work properly if it is being developed and implemented?

Will there be any resistance from the user that will undermine the possible

application benefits?

2.3.1.3 Economic Feasibility

2.4 Analysis and Design

2.4.1 Design Specifications

First of all, I have gone through the code, understan

algorithm and its operation. Based on the above analysis I have designed a brief outline of

the design to be done in order to achieve the goal of magnetic moment based optimization.

Then I discussed this with guide, one of the authors of the code and finalized the proper

design scheme.

2.4.2 Structured Analysis

 It is a set of techniques and graphical tools that allow the analyst to develop a new kind of

system specifications that are easily understandable to the user. One tool for this is Data

Flow Diagram (DFD).

2.4.2.1 DFD of work flow for Magnetic Moment based Optimisation:

Figure 2.1 DFD of work flow for Magnetic Moment based Optimisation in USPEX

2.4.3 Design Objectives

System design is highly creative process, which can be greatly facilitated by the following

stages:

Proper problem definition

Pictorial description of the existing system

Set of requirements of the new system

Overall design of the whole system

During analysis the focus is on what needs to be done, independent of how it is done. During

design, decisions are made about how the problem will be solved, first at a high level, then

at increasingly detailed level.

System design is the first stage in which the basic approach of solving the problem is

selected. During system design, the overall structure and style is decided. The system

architecture is the overall organization of the system into components called sub-systems.

The architecture provides the context in which more detailed decisions are made in later

design stages. By making high level decisions that apply to the entire system, the system

designer partitions the problem into sub-systems so that several designers working

independently on different subsystems can be further work.

 The system designer must make the following decisions:

Organize the system into sub-systems.

Identify concurrency inherent in the system.

Strategy for data stores (data structure)

Handling global resources.

Basic architecture for system.

2.4.4 Logical design and code development

In this step of design we draw a logical model of our system of interest. On the basis of the

structured analysis such as DFD, Structured English we draw a conceptual model of our

system of interest. In project logical design is as follows:

Start new simulation:
if (INPUT_EA.txt file)
 add magnetic moment as optimization parameter
if (createORGstruc.m file)
 set magnetic moment as optimization parameter
if (initialize_POP_STRUC.m file)
 add magnetic moment in initial population structure
 and set magnetic moment value to zero for current generation
if (ev_alg.m file)
 create magneticMoments.dat file
 perform magnetic moment based optimization for current generation
 and set magnetic moment value to zero for offsprings
if (readCalcFilesVASP.m file)
 add a function call to read magnetic moments from ab initio code output
if (writeOutput.m)
 write magnetic moment values in magneticMoments.dat file
if (writeGenerationOutput.m)
 create BESTmagneticMoments.dat file

and write BEST magnetic moment value in BESTmagneticMoments.dat file
design a function to read magnetic moment values
: end Simulation

2.4.5 Physical Design

After deciding what has to be done actual work of designing start in which we actually

design the system based on the logical design. The final physical design appears as given

below [2.7]

Table 2.1 Modifications and addition of modules in USPEX for Magnetic Moment based Optimization

Code Segment to be Modified Code Segment after Modification

File Name: INPUT_EA.txt
% optimisation criteria
enthalpy : optType (optimise by: enthalpy,
volume, hardness, struc_order, aver_dist)

% optimisation criteria
mag_moment : optType (optimise by:
enthalpy, volume, hardness, struc_order,
aver_dist, mag_moment)

File Name: createORGstruc.m
elseif strcmpi(optType, 'aver_dist')
ORG_STRUC.optType = 5;
End

elseif strcmpi(optType, 'aver_dist')
ORG_STRUC.optType = 5;
elseif strcmpi(optType, 'mag_moment')
ORG_STRUC.optType = 6;
End

File Name: initialize_POP_STRUC.m

,'Cluster_Volume',{}) ,'Cluster_Volume',{}, 'mag_moment',{})
POP_STRUC.POPULATION(i).survivingS
ince = 0;

POP_STRUC.POPULATION(i).survivingS
ince = 0;
POP_STRUC.POPULATION(i).mag_mom
ent = 0;

File Name: ev_alg.m
unix(['echo "------- generation'
num2str(POP_STRUC.generation) ' -------
" >>' POP_STRUC.resFolder
'/enthalpies']);

unix(['echo "------- generation'
num2str(POP_STRUC.generation) ' -------
" >>' POP_STRUC.resFolder
'/enthalpies']);
if ORG_STRUC.optType == 6
 unix(['echo "------- generation'
num2str(POP_STRUC.generation) ' -------
" >>' POP_STRUC.resFolder
'/magneticMoments.dat']);
end

fitness = -sqrt(fitness);
end
[nothing, ranking] = sort(fitness);

fitness = -sqrt(fitness);
elseif ORG_STRUC.optType == 6
for fit_loop =
1:length(POP_STRUC.POPULATION)
fitness(fit_loop) =
POP_STRUC.POPULATION(fit_loop).ma
g_moment;
end
end
for i = 1 : length(fitness)
try
if
POP_STRUC.POPULATION(i).FITNESS
ES(end) > 999999 % structure with errors
fitness(i) = 1000000;
end
catch
end
end
[nothing, ranking] = sort(fitness);

,'Cluster_Volume',{}) ,'Cluster_Volume',{}, 'mag_moment',{})
OFF_STRUC.POPULATION(ind).survivin
gSince = 0;

OFF_STRUC.POPULATION(ind).survivin
gSince = 0;
OFF_STRUC.POPULATION(ind).mag_m
oment = 0;

File Name: readCalcFilesVASP.m
[POP_STRUC.POPULATION(Ind_No).C
OORDINATES,POP_STRUC.POPULATI
ON(Ind_No).LATTICE] = read_VASP
('CONTCAR', NCoords);

[POP_STRUC.POPULATION(Ind_No).C
OORDINATES,POP_STRUC.POPULATI
ON(Ind_No).LATTICE] = read_VASP
('CONTCAR', NCoords);
if ORG_STRUC.optType == 6

POP_STRUC.POPULATION(Ind_No).ma
g_moment = readMagneticMoment();
End

File Name: writeOutput.m
unix(['echo '
num2str(POP_STRUC.POPULATION(Ind
_No).FITNESSES) ' >> '
ORG_STRUC.homePath '/'
POP_STRUC.resFolder
'/enthalpies_complete.dat']);

unix(['echo '
num2str(POP_STRUC.POPULATION(Ind
_No).FITNESSES) ' >> '
ORG_STRUC.homePath '/'
POP_STRUC.resFolder
'/enthalpies_complete.dat']);
if ORG_STRUC.optType == 6
 unix(['echo '
num2str(POP_STRUC.bodyCount) ' '
num2str(POP_STRUC.POPULATION(Ind
_No).mag_moment) ' >>'
ORG_STRUC.homePath '/'
POP_STRUC.resFolder
'/magneticMoments.dat']);
end

File Name: writeGenerationOutput.m
unix(['echo "------- generation'
num2str(POP_STRUC.generation) ' -------
" >>' ORG_STRUC.homePath '/'
POP_STRUC.resFolder
'/BESTkpoints.dat']);

unix(['echo "------- generation'
num2str(POP_STRUC.generation) ' -------
" >>' ORG_STRUC.homePath '/'
POP_STRUC.resFolder
'/BESTkpoints.dat']);
if ORG_STRUC.optType == 6
 unix(['echo "------- generation'
num2str(POP_STRUC.generation) ' -------
" >>' ORG_STRUC.homePath '/'
POP_STRUC.resFolder
'/BESTmagneticMoments.dat']);
end

unix(['echo '
num2str(POP_STRUC.PSO(POP_STRUC.
bestPSOstruc).enthalpy) ' >>'
ORG_STRUC.homePath '/'
POP_STRUC.resFolder
'/BESTenthalpies.dat']);

unix(['echo '
num2str(POP_STRUC.PSO(POP_STRUC.
bestPSOstruc).enthalpy) ' >>'
ORG_STRUC.homePath '/'
POP_STRUC.resFolder
'/BESTenthalpies.dat']);
if ORG_STRUC.optType == 6
 unix(['echo ' num2str(-
1*POP_STRUC.PSO(POP_STRUC.bestP
SOstruc).fitness) ' >>'
ORG_STRUC.homePath '/'
POP_STRUC.resFolder
'/BESTmagneticMoments.dat']);
end

unix(['echo '
num2str(POP_STRUC.POPULATION(PO
P_STRUC.ranking(1)).FITNESSES(end)) '
>>' ORG_STRUC.homePath '/'
POP_STRUC.resFolder
'/BESTenthalpies.dat']);

unix(['echo '
num2str(POP_STRUC.POPULATION(PO
P_STRUC.ranking(1)).FITNESSES(end)) '
>>' ORG_STRUC.homePath '/'
POP_STRUC.resFolder
'/BESTenthalpies.dat']);
if ORG_STRUC.optType == 6
 unix(['echo ' num2str(-
1*fitness(POP_STRUC.ranking(1))) ' >>'
ORG_STRUC.homePath '/'
POP_STRUC.resFolder
'/BESTmagneticMoments.dat']);
end

Function Designed to read values of magnetic moment from ab initio code output:
readMagneticMoment.m

function mag_moment = readMagneticMoment()
global POP_STRUC
global ORG_STRUC

[nothing, magmomStr] = unix('./getStuff OSZICAR mag 11')
magmom = str2num(magmomStr);

if isempty(magmom)
if isempty (POP_STRUC.POPULATION(Ind_No).Error)
POP_STRUC.POPULATION(Ind_No).Error = 1;
else
POP_STRUC.POPULATION(Ind_No).Error =
POP_STRUC.POPULATION(Ind_No).Error + 1;
end
mag_moment = 0;
unix(['echo PROBLEM_read_VASP_OSZICAR ' num2str(Ind_No)])
unix('pwd');
else
mag_moment = magmom(end);
end

2.4.6 Files and file names

2.4.6.1 MATLAB scripts (.m)

These are the main MATLAB script and function files, in which USPEX code is written.

2.4.6.2 MATLAB variables (.mat)

Used to store population structure in USPEX.

2.4.6.3 .dat and .txt files

These are the files extension for files to save data.

2.5 Implementation

2.5.1 System testing and quality assurance

In this phase the system is tested. Normally programs are written as a series of individual

modules, these subjects to separate and detailed test. The system is then tested as a whole.

The separate modules are brought together and tested as a complete system. The system is

tested to ensure that interfaces between modules work (integration testing), the system works

on the intended platform and with the expected volume of data (volume testing) and that the

system does what the user requires (acceptance/beta testing).

Levels of Quality Assurance:

Alpha testing: In this test software goes through a phase in which errors and failures based

on simulated user requirement are verified and studied.

Beta testing: In this modified software is checked at actual user's site on a live environment.

Note: THIS SYSTEM HAS SUCCESSFULLY GONE THROUGH BOTH TESTING.

2.5.2 System Testing

2.5.2.1 Example 1: Magnetic Moment Based optimization for FePt
system at a pressure of 100 Kilo Bar

Figure 2.2 Variation in Magnetic Moment with Generation

Figure 2.3 Structures in Generation 1st of calculation

2.5.2.2 Example 2: Magnetic Moment Based optimization for FePt system
at a pressure of 500 Kilo Bar

Figure 2.4 Variation in Magnetic Moment with Generation

Figure 2.5 Structures in Generation 1st of calculation

2.6 Hardware and software selection

For design purpose no specific hardware requirement is needed, a computer with normal

hardware configuration having Linux based operating system with Matlab and at least one

of the software codes for ab initio calculation is sufficient. For the purpose of application,

hardware configuration should be good to get results in reasonable time with accuracy.

2.7 Conclusion

It has been a great pleasure for me to work on this exciting and challenging project. This

project proved good for me as it provided practical knowledge of programming in

MATLAB. It also provided knowledge of the VASP (an ab initio calculation method) which

is very useful. This will provide better opportunities in future for new projects.

2.8 Benefits

2.10 References

[2.1] USPEX Website: http://han.ess.sunysb.edu/~USPEX/.

[2.2] USPEX Manual: http://han.ess.sunysb.edu/~USPEX/download.html.

[2.3] Maddox J. (1988), Crystals from first principles, Nature 335, 201.

[2.4] Jóhannesson G.H., Bligaard T., Ruban A.V., Skriver H.L., Jacobsen K.W., and Nørskov J.K. (2002).
Combined Electronic Structure and Evolutionary Search Approach to Materials Design, Phys. Rev.
Lett, 88, art, 255506.

