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Abstract

In this work, the thermal conductivity of Al,O5 nanofluids has been investigated for the sensitivity
towards neutron irradiation. The solution combustion method has been used for the synthesis of A1,O5
nanoparticles that have been used for the preparation of the nanofluids. Prepared nanofluids have been
neutron-irradiated for 7 and 14 days. Dynamic Light Scattering, Scanning Electron Microscopy, and
Ultraviolet-Visible Spectroscopy have been used to ascertain the change in properties before and after
neutron-irradiation. Thermal conductivity has been measured for un-irradiated and neutron-irradiated
nanofluids at 30 °C using a KD2 pro thermal properties analyzer. The decrease in thermal conductivity
has been observed after neutron-irradiation that further decreases with increased duration of exposure
and concentration of nanoparticles. 5 and 10% decrease in thermal conductivity has been recorded after
7 and 14 days of neutron irradiation for change in concentration from 0 to 2 volume percent. Neutron-
irradiation sensitivity analysis revealed that heat transfer characteristics are sensitive at higher
concentrations and during initial exposure of neutron-irradiations.

1. Introduction

Nanofluids have been widely investigated for the heat transfer characteristics [1-6] and reported as future
generation material for numerous applications [7—10]. The metal oxide nanoparticles significantly enhance the
heat-carrying capacity of conventional fluids [11-14]. Al,O5 [15], CuO [16], Fe,O5 [17], TiO, [18], etc based
nanofluids show improved performance in terms of an increase in the thermal conductivity. Nanofluids can be
of great use in nuclear reactors for the power production industry [19]. For advanced nuclear reactors, new
materials, fuel, cooling fluids, and more efficient heat transfer processes are required and therefore these are the
topics of great interest [20, 21].

There are many environmental factors that can affect the performance of nanofluids [22]. Materials used in
nuclear reactors are in continuous contact of radiations which can affect the material properties and must be
evaluated. Pinho e al [23] investigated the effect of the gamma irradiations on the thermophysical properties of
ZrO, nanofluids and observed a significant decrease in the thermal conductivity of nanofluids after exposure to
gamma radiation. Nesvizhevsky [24] studied the interaction of neutrons with nanoparticles and observed a
decrease in energy transfer. Eggers et al [25] shown reduced heat loss by performing irradiation and energetic
analysis of nanofluid-based volumetric absorbers for concentrated solar power. Konobeyev et al [26] developed
amodel for atomic displacement cross-sections for neutron irradiation of materials and established the
formation of defects due to irradiation. A significant reduction in mechanical strength after neutron irradiation
has also been reported [27].

Senor et al [28] evaluated the effect of neutron irradiations on the thermal conductivity of SiC based
nanocomposites and suggested that irradiation-induced defects result in the degradation in thermal
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conductivity. Rocha et al [29, 30] suggested that nanofluids have a negligible impact on neutron transport in the
core due to the low concentration of nanoparticles. They emphasized on proper nanoparticles selection for
better compatibility with the chemical and irradiation environment of the reactor. However, there is a need to
investigate the neutron-irradiation sensitivity of the thermal conductivity of nanofluids for different durations
of the exposure.

In this study, the effect of neutron irradiation has been evaluated on the thermal conductivity of Al,O;
nanofluids. Al,O3 nanoparticles have been synthesized using the solution combustion method and used for the
preparation of nanofluids in distilled water. These nanofluids have been exposed to neutron-irradiation for
different durations. Un-irradiated and neutron-irradiated nanofluids have been characterized using Dynamic
Light Scattering, Scanning Electron Microscopy, and Ultraviolet-Visible Spectroscopy to ascertain changes in
characteristics due to irradiation. The thermal conductivity of un-irradiated and neutron-irradiated nanofluids
has been measured and reported in the paper. Neutron-irradiation sensitivity of thermal conductivity has also
been calculated. These results will be helpful in understanding the implications of utilizing nanofluids in nuclear
reactors.

2. Materials and method

2.1. Synthesis of Al,O; nanoparticles

Al, O3 nanoparticles have been synthesized using the procedure adopted from our previous work [31]. Precisa
(XB 220 A model) weighing balance, having a precision 0of 0.0001 g, has been used for all the weight
measurements. The stoichiometry amount of the base chemicals required for the synthesis has been calculated
using molecular weight. To synthesize Al,O; nanoparticles, 7.5026 g aluminum nitrate has been dissolved in 10
ml distilled water using magnetic stirrer. 3.003 g urea has been added to this solution through vigorous stirring.
The solution has been heated to obtain a transparent sticky gel. The gel has been first dehydrated at 100 °C for 2 h
and then combusted at 1000 °C for 2 h. The combusted sample has been ground to obtain a fine powder of Al,O;
nanoparticles. Following is the equation showing the formation of Al,O; Nanoparticles:

2A1(NO3)39H20 + 5CH4N20 — A1203 + 28H20 + 5C02 + 8N2

2.2. Preparation of Al,O; nanofluids

Al, O3 nanofluids 0f 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 and 2.00 volume % concentrations have been prepared
in distilled water (Polisher; Biopak) base fluid using a two-step approach from the synthesized Al,O;
nanoparticles. The required amount of nanoparticles for the preparation of different volume concentration
nanofluids have been calculated using the law of mixture formula. Nanofluids of desired concentrations have
been prepared by suspending the required amount of synthesized Al,05 nanoparticles in the base fluids. The
suspensions have been stirred for 1 h using magnetic stirrer (Tarsons; SPINOT), sonicated for 30 min using
probe ultrasonic processor (Electrosonic; E1-250 W) and undergone ultrasonic vibrations for 90 min using
water bath ultrasonicator (Toshcon; SW4), so as to obtain homogenous stable nanofluids suspension.

2.3.Neutron irradiation of nanofluids

The prepared nanofluid samples have been irradiated by neutron flux using the setup of Meena et al [32].
Radioisotopic Am-Be neutron source has been used for irradiation as it produces highly stable flux and is an
efficient option for aqueous samples. Figure 1 shows a schematic of the neutron source setup used for the
irradiation of nanofluids. The neutron irradiation setup consists of a neutron source tank which isa 0.5 cm thick
steel cylinder (diameter 92 cm and height 122 cm) filled with paraffin. This source tank consists of a central
cylindrical cavity of 20 cm diameter inside of which the neutron source was placed. The nanofluid samples to be
irradiated have been placed inside the central cylindrical cavity near the neutron source.

2.4. Measurement of thermal conductivity

The thermal conductivity of un-irradiated and neutron-irradiated nanofluids samples after exposure of 7 and 14
days has been measured at 30 °C using KD2 Pro Thermal Properties Analyzer of Decagon Devices, which is
based on the transient line heat source method. To measure the thermal conductivity, KS-1 sensor of needle
diameter 1.3 mm and length 60 mm have been inserted vertically in nanofluid containers of 50 ml volume, 30
mm diameter and 120 mm length that has been placed upside down. Dimensions of the container are large
enough to be considered infinite as compared to the sensor needle. The performance of the sensor has been
verified with the standard glycerin sample supplied with the KD2 Pro. Measured thermal conductivity of the
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Figure 1. Schematic arrangement of a neutron irradiation setup.

As prepared  After 7days  After 14 days

Figure 2. Al,O; Nanofluids.

' . K which is comparable to 0.285 W m™" - K as reported by the

standard glycerin sample has been 0.289 W m™
manufacturer.

Average of three measurements of thermal conductivity has been taken for each sample to ensure the
accuracy and consistency of the results. A time gap of 30 min has been kept between consequent measurements
to nullify the effect of temperature increase in the vicinity of the probe due to transient heat. Results hence

obtained have found to be consistent and reproducible.

3. Results and discussion

3.1. Nanofluids stability analysis

The stability of the prepared nanofluids has been analyzed after 7 and 14 days. Figure 2 shows images of Al,O5
nanofluids as prepared, after 7 days and after 14 days. No visible sedimentation shows the absence of aggregation
and agglomeration of nanoparticles. Table 1 shows the results of the thermal conductivity measurement of un-
irradiated Al,O3 nanofluids as prepared, after 7 days and after 14 days which are within the accuracy region.
Figure 2 along with table 1 verifies the stability of prepared nanofluids.

3.2. Characterization of Al,O; nanofluids

The un-irradiated and neutron-irradiated Al,O; nanofluids have been characterized using Dynamic Light
Scattering (DLS, Malvern, Nano-ZS), Scanning Electron Microscopy (SEM, Carl-Zeiss, EVO-18) and
UV-visible Spectroscopy (UV—vis, Thermo Fisher, Multiskan) to ascertain stability, size and absorption
characteristics. Al,O3 nanofluids of 0.25 volume % concentration have been used for the characterization
studies.
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Figure 3. Size distribution of the prepared Al,O; nanofluids (a) Un-irradiated and (b) Neutron-irradiated (14 days).

Table 1. Thermal conductivity of Un-Irradiated Al,O5; Nanofluids after 7

and 14 days.
Thermal conductivity (W/(m.K)) of
Un-Irradiated Al,O3 nanofluids

Volume After After
Percent (vol. %) As prepared 7 days 14 days
0 0.614 0.613 0.614
0.25 0.626 0.624 0.624
0.5 0.636 0.635 0.633
0.75 0.646 0.646 0.644
1 0.657 0.654 0.655
1.25 0.668 0.666 0.664
1.5 0.678 0.674 0.673
1.75 0.685 0.682 0.682
2 0.695 0.692 0.691

3.2.1.DLS
Figure 3 shows the size distribution of un-irradiated and neutron-irradiated Al,O; nanofluids. Weighted
average particle size for un-irradiated Al,O; nanofluids is 44 nm whereas 70 nm for the neutron-irradiated
Al O3 nanofluids. An increase in average size indicates agglomeration and aggregation after neutron irradiation.
The zeta potential values, 35.3 mV and 34.2 mV, have been obtained for the un-irradiated and neutron-
irradiated Al,O; nanofluids after 14 days, respectively (figure 4). Shoulder like behavior in zeta potential graph of
the neutron-irradiated sample may be attributed to the slight presence of another population arising out due to
the change in properties of the sample under the influence of the neutron-irradiation. Longer tails in the
hydrodynamic size distribution of neutron-irradiated samples also emphasize the minute presence of relatively
larger-sized particles, forming another population, resulting in the shoulder like behavior in zeta potential
graph.

3.2.2.SEM

Figure 5 shows the images of Al,O5 nanofluids before and after the neutron-irradiation. Nanosize distribution of
synthesized nanoparticles in the prepared nanofluids is evident from the figure. For un-irradiated Al,O;
nanofluids, the average particle size is 45 nm with a standard deviation of 2 nm. Figure 5(a) also shows the
uniform distribution of nanoparticles in the nanofluids with no aggregation. Figure 5(b) shows the formation of
afew clumps with an average particle size of 73 nm with a standard deviation of 3 nm for the neutron-irradiated
nanofluids.

3.2.3. UV-vis

Figure 6 shows the absorption spectra of un-irradiated and neutron-irradiated nanofluids. For un-irradiated
Al,O3 nanofluids, absorption maximum appears at 359 nm and for neutron-irradiated nanofluids, the
respective absorption maximum appears at 366 nm. The shift in absorption maximum wavelength indicates an
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Figure 4. Zeta potential distribution of the prepared Al,O; nanofluids (a) Un-irradiated and (b) Neutron-irradiated (14 days).

increase in the size that in turn indicates the agglomeration or aggregation of nanoparticles after neutron-
irradiation.

Calculated bandgap energy using the Tauc plot (figure 7) is 3.17 and 3.11 eV for un-irradiated and neutron-
irradiated nanofluids. The slight reduction in energy level favors more absorption of excited valance band

electrons.

3.3. Thermal conductivity measurement analysis

Thermal conductivity measurements show a significant change in thermal conductivity with a change in
concentration of nanoparticles and/or exposure to neutron-irradiations. Figure 8 shows the change in thermal
conductivity with an increase in the concentration of Al,O; nanoparticles in distilled water base fluids for un-
irradiated and neutron-irradiated samples. Results show that the thermal conductivity of un-irradiated Al,O;
nanofluids is higher as compared to distilled water that further increases with an increase in the concentration of
Al, O3 nanoparticles in the base fluid. An increase of 13% in thermal conductivity has been observed for the
increase in the concentration of nanofluids from 0 to 2 volume percent.

Xie et al[33] demonstrated that the thermal conductivity enhancement of nanofluids is influenced by multi-
faceted factors including the volume fraction of the dispersed nanoparticles, the tested temperature, the thermal
conductivity of the base fluid, the size of the dispersed nanoparticles, the pretreatment process, and the additives
of the fluids [34—37]. Various models show that the enhancement in thermal conductivity is the combined effect
of nanomaterial properties viz. size, shape, agglomeration and medium properties [38—40].

Figure 8 also shows a decrease in the thermal conductivity of nanofluids that has been exposed to neutron-
irradiation. Radiation affects the material’s electrical, thermal, structural, physical and mechanical properties. A
change in the material properties is evident from SEM images (figure 5). DLS size distributions (figure 3) exhibit
the increase in weighted average particle size along with the long tails for the neutron-irradiated samples. An
increase in the average size indicates agglomeration after neutron-irradiation and it has been well established
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Figure 5. SEM images of the prepared Al,O; nanofluids (a) Un-irradiated and (b) Neutron-irradiated (14 days).

that agglomeration leads to a decrease in thermal conductivity of nanofluids. With the increase in nanoparticle
concentration, the thermal conductivity increases for un-irradiated nanofluids but decreases for neutron-
irradiated nanofluids. The observation also supports that neutron irradiation tends to increase agglomeration

6
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Figure 6. UV—-vis absorption spectra of the prepared Al,O; nanofluids.
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Figure 7. Direct bandgap Tauc relation plot of the prepared Al,O3 nanofluids.
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Figure 8. Variation in thermal conductivity with concentration and duration of neutron-irradiation.

and this agglomeration is more prominent at higher concentrations resulting in the larger decrease in thermal
conductivity at higher concentrations. It has also been suggested that the bombardment of neutrons on a
material induce defects [28] and vacancies [41] apparent from UV—vis spectra (figure 6). Further, the decrease in

7
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Figure 9. Neutron irradiation sensitivity analysis for different duration of exposure.

thermal conductivity is more prominent with increased duration of radiation exposure. For an increase in
concentration from 0 to 2 volume percent, 5 and 10% decrease in thermal conductivity have been obtained for
Al O3 nanofluids exposed to neutron-irradiation for 7 and 14 days, respectively.

3.4. Neutron irradiation sensitivity analysis

The sensitivity of a quantity with a change in different parameters is evaluated in a sensitivity analysis. Here
neutron-irradiation exposure duration has been changed and respective thermal conductivity sensitivity has
been evaluated. Figure 9 shows the sensitivity of thermal conductivity for different duration of exposure of
neutron-irradiation. Sensitivity analysis reveals that the decrease in thermal conductivity is highly sensitive to
neutron-irradiation during initial exposure of 7 days which is also higher at higher concentration.

4, Conclusions

In the present study, the thermal conductivity of Al,0; nanofluids has been investigated for the neutron-
irradiation sensitivity. Following are the important inferences drawn from the results of the study:

(1) The thermal conductivity of neutron-irradiated Al,O; nanofluids is lowered as compared to un-irradiated
nanofluids that further decreases with increased duration of exposure. For a change in concentration from 0
to 2 volume percent, 5 and 10% decrease in thermal conductivity has been observed for Al,O3; nanofluids
exposed to neutron-irradiation for 7 and 14 days, respectively.

(2) For neutron-irradiated Al,O3 nanofluids heat carrying capacity also decreases with increasing concentra-
tion contrary to un-irradiated nanofluids where thermal conductivity increases with increasing

concentration.

(3) Neutron irradiation sensitivity analysis revealed that heat transfer characteristics are more sensitive at
higher concentrations. It can also be inferred that neutron irradiation sensitivity is most prominent at initial
exposure and this sensitivity decreases with increased duration of exposure.

The results of the study emphasize the need for a detailed investigation of the applicability of nanofluids in
nuclear reactor systems.
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